
ࣾஂ๏ਓ ৘ใ௨৴ֶձࢠి
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

৴ֶٕใ
TECHNICAL REPORT OF IEICE.

ϓϨϑΝΫλϦϯάͷͨΊͷෆ٢ͳष͍ͷݕग़݁Ռͷ༏ઌॱҐ෇͚

ηʔϦϜɹφολ΢οτ† ྛ ৾ฏ† ഢࠤ †࢘ݩ

† ౦ۀ޻ژେֶ େֶӃ৘ใཧڀݚֶ޻Պ ߈ઐֶ޻ࢉܭ
˟ 152–8552౦ژ౎໨۠ࠇେԬࢁ 2–12–1–W8–83

E-mail: †{natthawute,hayashi,saeki}@se.cs.titech.ac.jp

͋Β·͠ ϓϨϑΝΫλϦϯάͷద༻ՕॴΛಛఆ͢ΔͨΊɼιʔείʔυதͷෆ٢ͳष͍ͷݕग़͕ثఏҊ͞Ε͍ͯΔɽ

͔͠͠ɼطଘͷෆ٢ͳष͍ݕग़ث͸ɼ։ൃऀͷࡏݱͷ։ൃίϯςΩετΛྀͣͤߟɼؔ࿈͢Δष͍ͱؔ࿈͠ͳ͍ष͍

Λࠞͯͤ͞ࡏग़ྗ͢ΔͨΊɼಛఆͷίϯςΩετʹै͍ͬͯΔ։ൃऀʹ͸ద͞ͳ͍ɽͦͷ݁Ռɼ։ൃऀ͸ద͢Δष͍

Λಛఆ͢ΔͨΊͷؒ࣌Λඞཁͱ͢Δͱ͍͏՝୊͕͋ΔɽຊߘͰ͸ɼෆ٢ͳष͍Λ։ൃऀͷͭ࣋ίϯςΩετʹै͍

༏ઌॱҐ෇͚͢Δख๏ΛఏҊ͢Δɽզʑ͸ɼΠγϡʔ؅ཧγεςϜʹొ࿥͞Εͨɼ࣍ͷϦϦʔε·Ͱʹղܾ͢΂͖Π

γϡʔͷҰཡΛ։ൃͷίϯςΩετͱݟͳ͢ɽఏҊख๏Ͱ͸ɼΠγϡʔͷઆ໌จʹରͯ͠ػೳ૞ࡧख๏Λద༻ͯ͠ಘ

ͨ݁ՌͷϞδϡʔϧҰཡΛ༻͍ͯɼίϯςΩετʹؔ࿈෇͘ष͍Λಛఆ͢ΔɽίϯςΩετʹؔ࿈෇͘౓߹͍ʹΑΔ

༏ઌॱҐʹ͖ͮجɼෆ٢ͳष͍ݕग़ثͷग़ྗΛฒ΂ସ͑ͯग़ྗ͢ΔɽຊߘͰ͸ɼΦʔϓϯιʔεϓϩδΣΫτΛ༻͍

ఏҊख๏ͷ༧උධՁʹ͍ͭͯ΋ड़΂Δɽͨͬߦͯ

Ωʔϫʔυ ϦϑΝΫλϦϯά,ػೳ૞ࡧ,ෆ٢ͳष͍

Toward Prioritizing Code Smell Detection Results for Prefactoring

Natthawute SAE-LIM†, Shinpei HAYASHI†, and Motoshi SAEKI†

† Department of Computer Science, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology

2–12–1–W8–83, Ookayama, Meguro-Ku, Tokyo, 152–8552 Japan

E-mail: †{natthawute,hayashi,saeki}@se.cs.titech.ac.jp

Abstract In order to find the opportunities for applying prefactoring, several techniques for detecting bad smells

in source code have been proposed. However, existing smell detectors are often not suitable for developers who

have a specific context because these detectors do not consider their current context and output the results that are

mixed with both smells that are and are not related to such context. Consequently, the developers have to spend a

considerable amount of time identifying relevant smells. In this paper, we propose a technique to prioritize bad code

smells by using developers’ context, i.e., a list of issues in an issue tracking system that needs to be implemented

before next release. We applied feature location technique to the list of issues and used the results to specify which

smells are associated with the context. Thus, our approach can provide the developers with a list of prioritized

bad code smells that is related to their current context. Several preliminary evaluations using open source project

indicated the effectiveness of our technique.

Key words Refactoring, feature location, bad code smells

1. Introduction

Refactoring is a technique for improving the structure of

the software without changing its functionality [1]. Code

fragment that indicates problems and should be refactored is

called design flaw or code smell. Many types of code smells

are summarized as a smell catalog with their names [1]ʙ[3].

Code smells are often introduced when implementing new

features or by developers with high workloads [4]. In order

to suggest refactoring opportunities to developers, various

types of code smell detectors have been proposed by detect-

ing these code smells automatically [5].

— 1 —



According to the work by Meng et al. [6], developers do

not typically refactor their code unless they have to change

the code for fixing some bugs or introducing new features.

However, existing code smell detectors generate a list of code

smells without considering such developers’ current context.

Most of the existing code smell detectors analyze the speci-

fied source code and present the detected smells ordered by

the attribute that is not related to the context of the de-

velopers such as module or severity to the developers. Such

list of smells is inappropriate when the user developers have

specific context such as the features that are planned to be

implemented because both smells that are and are not re-

lated to the developers’ context are mixed and scattered all

over the list of smells. As a consequence, the developers

have to spend a considerable amount of time specifying rel-

evant smells that fit their context since fixing such smells

may contribute to support their future implementation, i.e.,

improving the understandability or extendibility of the pro-

gram. Such activity is time-consuming, in analogy with that

static analysis tools are not used well by developers due to

the large number of the detected warnings [7].

In this paper, we propose a technique to prioritize code

smells from code smell detectors by considering developers’

current context. This technique focuses on supporting the

prefactoring phase [1]. In the prefactoring phase, developers

improving source code’s extendibility and understandability

by refactoring their source code before implementing a fea-

ture to facilitate their implementation. In the proposed tech-

nique, we regard the change descriptions in an issue tracking

system that are going to be implemented by a particular

milestone as the developers’ context. Such changes are go-

ing to be implemented by modifying or extending existing

modules in the source code. These existing modules can

be located by using feature location technique [8], [9]. We

consider such modules as relevant modules because they are

likely to be the location for implementing the new feature in

the change description. As a result, code smells that appear

in relevant modules should have higher priority so that the

developers could easily distinguish them from irrelevant code

smells. Thus, with supporting from our technique, develop-

ers can obtain a prioritized list of code smells based on the

relevance to their context.

We have preliminary evaluated our technique with several

open source projects, and the results indicate the potential

of the effectiveness of our technique.

The main contribution of this paper is to show that the rel-

evance between developers’ context and code smells can be a

useful criterion for prioritizing code smells for prefactoring.

The rest of this paper is organized as follows. First, the next

section explains our approach and its automated toolchain.

Source code

Change
descriptions Feature

location

FL result:
List of modules

Scoring

Output: prioritized smells

Code smell 
detection

!
!

!
!
!

Code smells

!

Figure 1: Overview of the proposed technique.

Section 3 discusses our preliminary evaluation. Section 4 de-

scribes related works. Finally, section 5 concludes this paper.

2. Proposed Technique

In this paper, we focus on supporting an issue-driven soft-

ware development project adopting an issue tracking system

such as SourceForge or Bugzilla to manage their lists of is-

sues. Assuming that such projects have a list of issues that

need to be implemented before a particular milestone, i.e.,

releasing major or minor versions. Such list of issues is useful

to estimate developers’ context, and we regard the modules

that are likely to be modified as our estimation.

We propose a technique for prioritizing code smell detec-

tion results from existing code smell detectors by considering

the list of issues in the issue tracking system that developers

need to solve. Figure 1 shows an overview of our technique.

Each gray node represents a subprocess of our technique.

The input of the process is a list of issues’ change descrip-

tions obtaining from the issue tracking system and the source

code of the targeted project. The output is the prioritized

list of code smells based on the relevance to the developers’

context. Our approach first uses the feature location tech-

nique to obtain the list of modules that are likely to be the

targeted modules of each change description. Next, we gen-

erate a list of code smells by applying an existing code smell

detector with the source code of the focused project. Then,

for each code smell in the list, we calculate the score based on

the relevance of the prior result from feature location tech-

nique. Finally, we output the prioritized list of code smells

ordered by the score value mentioned above.

In our approach, we use the existing feature location and

code smell detection techniques. The next subsections de-

scribe the explanation of these techniques and how we apply

them.

2. 1 Using Feature Location Technique

Many types of feature location techniques have been pur-

— 2 —



Table 1: Example portion of code smell detector results

Type Entity Granularity Severity

SAP Breakers org/gjt/sp/jedit Subsystem 6

Blob org.gjt.sp.jedit.Buffer Class 7

Feature Envy buildDOM() : void Method 10

posed with different kinds of input and output [9]. Our

approach uses the one that takes a change description d

and source code C as inputs and provides a set of methods

M = {. . . ,m, . . . } with their probability as outputs. The

reason that we chose this type of feature location technique

is that we focus on supporting the issue-based software de-

velopment project which the developers tend to implement

features or fix bugs by following the change description in

an issue tracking system. In this situation, we assume that

such change description describes the new behavior of ex-

isting feature, i.e., fixing bugs or improving functionalities.

These existing features can be located by feature location

technique. Therefore, the located modules of these features

can be the candidates to be modified in order to achieve the

change. Consequently, applying the prefactoring technique

to these modules is likely to support the developers’ imple-

mentation, i.e., improving understandability or extendibility

of the source code. Thus, this type of feature location tech-

nique suits our needs.

In this paper, we input a set of change description D =

{d1, . . . , dn} and source code C to the feature location tech-

nique and obtain a series of sets of methods {M1, . . . ,Mn}.
2. 2 Using Code Smell Detection

Code smell detection is a technique that generates a list of

code smells from targeted source code. One example of the

approaches is to detect them based on particular metric val-

ues, e.g., lines of code (LOC). The input is the source code

that we want to analyze. The output is the list of smells.

Each smell consists of ⟨type, entity , granularity , severity⟩,
where type is the type of the detected smell, entity is the

module having the detected smell, granularity is the level of

code smell consisting of subsystem, class, and method, and

severity is an integer value for representing the strength of

the smell. Table 1 shows the example of code smell result

from the code smell detector. For example, the second row

shows the Bob smell in org.gjt.sp.jedit.Buffer class with

severity 7. Note that we omitted the package and class name

of the method level smell.

In this approach, we apply the code smell detector and

obtain the list of smells S.

2. 3 Scoring

To indicate the priority of each smell, we define the score

attribute. The value of the score attribute is calculated by

Figure 2: TraceLab configuration.

the weighted summation of the number of the modules in

the result from feature location technique that match each

smells’ module. The score of each s ∈ S can be defined as

score(s) =
n∑

i=1

∑

m∈Mi

⎧
⎨

⎩
w(m), if match(m, entity)

0, otherwise

where function match(m, entity) is true when module m

equals to or belongs to entity of each smell, and w(m) is

the weight of each module which can be the parameter of

our technique. If we treat every module equally, w(m) is

equal to one. However, we can utilize the probability of each

module from feature location technique result as a weight of

each module. In this case, w(m) becomes the probability of

each module. Nevertheless, in this paper, we focus on treat-

ing every module equally. The reason will be discussed in

Section 3.

2. 4 Automation

We have implemented an automated tool for the proposed

technique. The chain is designed to connect with an exist-

ing feature location tool. When executed, our tools trigger a

code smell detector to generate a list of smells and calculate

the score of each smells based on the relevance of the result

from feature location technique.

For the feature location technique, we use the vector space

model feature location technique [9] in a TraceLab-based so-

lution [10] proposed by Dit et al. because vector space model

is the foundation feature location technique that takes a text

document such as a change description as a query and find a

relevant code based on statistical methods. Figure 2 shows

our configuration in TraceLab.

For smell detection, we use inFusion v1.9.0 [11] because 1)

inFusion is capable of exporting the results as a file, 2) it

has a command-line interface and 3) it can detect 24 types

— 3 —



Table 2: Data sets information

Project Version Size (LOC) # Issues # Smells

jEdit 4.2–4.3 176,098 150 387

ArgoUML 0.22–0.24 272,590 91 404

of code smells such as Blob Class, Feature Envy, These char-

acteristics suits our approach.

2. 5 Limitation

In our approach, the result is mostly affected by the ac-

curacy of feature location technique. That is to say, if we

use other types of feature location technique, the result may

differ.

3. Preliminary Evaluation

We have conducted a preliminary evaluation to verify

whether our approach has the potential of effectiveness with

the following evaluation questions:

EQ 1: Are relevant code smells placed in the higher rank

of the list with our technique?

The aim of our approach is to put the relevant code smells

in the higher rank of the list for supporting the developers

specifying relevant smell. Thus, we confirm it by conducting

an experiment and analyzing the result.

EQ 2: Does our technique applicable to any entity type?

Since there are three types of entity generated by code

smell detector: subsystem, class, and method. We applied

our technique separately to each entity type and observed

the result.

EQ 3: Which weighting scheme provide a better result:

treating every smell equally or using the probability value

from feature location result?

As mentioned in Section 2, when calculating the score

value, we can either treat each module equally or use the

probability value from feature location result. We did an

experiment to see which is the better scheme.

3. 1 Data Collection

In this evaluation, jEditʢ*1ʣand ArgoUMLʢ*2ʣ, active open

source projects, were our subjects because their data are

available through feature location benchmark [9] and we can

obtain the gold set methods, the methods that were modified

by developers, which were associated with a particular issue

in the issue tracking system. Table 2 shows the information

of our data sets including the size of the source code of the

earlier version, the number of issues that we used in between

two versions, and the number of smells detected by inFusion

v1.9.0 [11].

We first defined the oracle as a set of code smells that

ʢ*1ʣɿhttp://www.jedit.org/

ʢ*2ʣɿhttp://argouml.tigris.org/

occur in the modules that were modified by developers dur-

ing two releases according to the data in feature location

bechmark because these code smells are relevant to the de-

velopers’ context as we discussed in the previous section. As

for jEdit, we prepared the oracle by first applying the source

code at version 4.2 to the code smell detector and obtained

the result. Next, we prepared the gold set methods, the

methods that were actually modified in order to solve each

extractable issue in jEdit’s issue tracking system by feature

location benchmark during version 4.2 and 4.3. Finally, we

intersected these two sets together so that we can obtain a

list of smells that is actually related to the developers’ con-

text. We applied the same process to ArgoUML version 0.22

and 0.24.

As for the baseline of our evaluation, we used the original

result from inFusion v1.9.0 [11] sorted by the severity of each

smell.

3. 2 Data Analysis

For evaluating the result of our approach, we use average

precision [12] as a criterion because it is considered a reason-

able metric for evaluating the quality of ranking documents.

The relevant documents in the higher rank more contribute

to the average precision than the relevant documents in the

lower rank. Therefore, since the aim of our technique is to

rearrange the result from a code smell detector and put the

relevant code smells in the higher rank, the average preci-

sion of the result from our technique should be higher than

the baseline of our evaluation, the original result from code

smell detector. The following formula can calculate average

precision.

AveragePrecision =

∑
r P@r

R

where r is the rank of each relevant document, R is the total

number of relevant documents, and P@r is the precision of

the top-r retrieved documents. In this context, the relevant

document is the code smell that matches the items in the

oracle, and the retrieved document is the code smell in the

result from the code smell detector.

We calculated the average precision of the baseline and the

result from our tools ordered by the score of each smell for

both jEdit and ArgoUML.

3. 3 EQ 1

As we can see from Figure 3, the average precision of the

result from our technique is significantly higher than the av-

erage precision of the baseline. This means that after pri-

oritizing the list of smells by our technique, smells that are

related to the developers’ context are on the higher rank of

the list. As a result, the developers can directly focus on the

top rank smells without specifying which smell is or is not

related to their context.

— 4 —



jEdit ArgoUML
0

0.2

0.4

0.6

0.8

1

0.32
0.29

0.78

0.69
0.75

0.71

A
v
er
ag

e
p
re
ci
si
on

Baseline Weight equally Use Probability

Figure 3: Comparison of the average precision value between

results of baseline and our approach.

We analyzed the result by considering the 1st rank in

the result from our technique. That is the Cyclic Depen-

dency smell of package org.argouml.uml. This smell was

ranked 123rd in the baseline. However, by applying our

technique, this smell becomes the 1st rank of the list with

the highest score. This is because this smell is related with

many issues that need to be solved by the developers. We

confirmed it by investigating the actual changes that were

made during revision 0.22–0.24. We found that out of 91 is-

sues, 65 issues were implemented in org.argouml.uml pack-

age which contains this CyclicDependency smell. There-

fore, if the developers realized the importance of this smell

and fixed it, it might be able to facilitate their implemen-

tation, i.e., improving the understandability or extendibil-

ity of source code for 65 issues. On the contrary, the 1st

rank in the baseline that is the SAPBreaker smell of package

org.argouml.cognitive.checklist is ranked 61st in the re-

sult from our technique. This is also because this smell is re-

lated with only a few issues in the issue tracking system. We

also investigated the actual change and found that there is no

issue implemented in org.argouml.cognitive.checklist

package. Thus, if the developers picked the 1st smell in the

original result from code smell detector and fixed it, it might

not support their implementation for any issue at all.

This evidence indicates that a list of smells ordered by the

relevance to developers’ context has a potential be able to

support developers’ implementation more than the original

order such as severity.

3. 4 EQ 2

Figures 4a and 4b shows the average precision of method,

class and subsystem entity types of jEdit and ArgoUML

projects respectively. In case of jEdit project, all of the av-

erage precision for each entity type is higher with our tech-

nique. However, in ArgoUML case, only the average preci-

sion value of class and subsystem entity type is increased,

not the method entity type. We investigated the result and

found that there are many smells that have zero score, but

they are matched with the items in the oracle. This means

that our approach predicted that these smells are not related

to the developers’ context while they actually are. One of

the reasons that might be the cause of this situation is the

accuracy of feature location technique. Since our technique

relies solely on the result of feature location technique, the

accuracy of feature location technique can also affect the ac-

curacy of our technique. That is to say, the feature location

technique may have failed to locate the correct module that

is the targeted of a change description. Consequently, our

method incorrectly predicted that this smell is not related to

the developers’ context and put it in the lower rank of the

list. The reason that this is not the case for subsystem and

class level smells is that when we calculate the score value of

each smell, the module m from feature location result must

equal to or belongs to entity of each smell s. Therefore, the

coarse-grained level code smells such as subsystem or class

level code smells tend to satisfy the criteria more than the

fine-grained level code smells like method level code smells.

This indicates that our technique is more appropriate with

the coarse-grained level code smells.

3. 5 EQ 3

Figure 3 shows the result of two different weighting

schemes displaying in black and grey. We can see that,

for jEdit, the average precision when we treat each module

equally is slightly higher than when we use the probability

value as a weight. However, in case of ArgoUML, the aver-

age precision when we treat each module equally is slightly

lower than when we use the probability value as a weight.

Therefore, we can not determine whether which weighting

scheme provide a better result.

Since there is no significant difference between the two

weighting schemes, we focus on the method of weighting ev-

ery smells equally because of the computational cost and

simplicity of the approach. However, it is possible to apply

other factors to the weighting scheme such as the impor-

tance of an issue, the severity of each code smell or the effort

needed for solving each code smell. This remains our future

work.

4. Related Work

Some existing techniques also use the context of develop-

ers to detect code smells [13], [14], but can be regarded as

supporting the postfactoring phase because such techniques

detect code smells during the source code editing process of

developers.

— 5 —



Method Class Subsystem
0

0.2

0.4

0.6

0.8

1

0.15

0.64
0.61

0.11

0.7

0.95
A
v
er
ag

e
p
re
ci
si
on

Baseline Result from our technique

(a) jEdit

Method Class Subsystem
0

0.2

0.4

0.6

0.8

1

0.19

0.58
0.54

0.4

0.89

0.99

A
ve

ra
ge

p
re
ci
si
on

Baseline Result from our technique

(b) ArgoUML

Figure 4: Comparision of the average precision value between result of baseline and our approach.

Moreover, since code smell detector tends to generate a

huge number of smells, many techniques have been proposed

to reduce the number of code smell detection results. Ko-

matsuda et al. [15] proposed a technique to detect code smell

that are relevant to developers’ context by inserting dummy

code fragment. Fontana et al. [16] proposed a technique to

reduce the number of code smell detection results by apply-

ing strong and weak filters. The novel point of our approach

compared to them is that our approach can be applied to

any kind of smell. We prioritize every smell in the detection

result based on the relevance to the developers’ context.

5. Conclusion

In this paper, we proposed a technique for prioritizing code

smell detection results by considering developers’ current

context. The result of our technique is the list of prioritized

smells based on the relevance to the developers’ context. The

more relevant with the developers’ context, the higher rank

that smell is placed on the list. Therefore, our approach can

assist the developers prioritizing code smells for prefactoring

phase. Our technique can be used for planning how to pref-

actor the source code before implementing sets of issue in an

issue tracking system. Our preliminary evaluation indicates

that our technique is potentially useful.

Our future work includes conducting case studies to con-

firm that relevant code smells, as defined in this context,

are useful to developers. Also, we should consider other fac-

tors that might affect developers’ decision whether to fix the

smells, e.g., the severity of smells, the effort needed to fix the

smells or the importance of the issues. Also, More projects

are needed to evaluate our technique.

Acknowledgement. This work was partly supported by

JSPS Grants-in-Aid for Scientific Research (#15K15970).

References

[1] M. Fowler, Refactoring: Improving the Design of Existing

Code, Addison-Wesley”, 1999.

[2] William C. Wake, Refactoring Workbook, Addison-Wesley,

2003.

[3] M. Lanza and R. Marinescu, Object-Oriented Metrics in

Practice, Springer, 2006.

[4] M. Tufano, F. Palomba, G. Bavota, and R. Oliveto, “When

and why your code starts to smell bad,” Proc. ICSE,

pp.404–414, 2015.

[5] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A

review of current knowledge,” Journal of Software Mainte-

nance and Evolution, vol.23, no.3, pp.179–202, 2011.

[6] N. Meng, L. Hua, M. Kim, and Kathryn S. McKinley, “Does

automated refactoring obviate systematic editing?,” Proc.

ICSE, pp.393–402, 2015.

[7] B. Johnson, Y. Song, E. R. Murphy-Hill, and Robert W.

Bowdidge, “Why don’t software developers use static anal-

ysis tools to find bugs?,” Proc. ICSE, pp.672–681, 2013.

[8] V. Rajlich, Software Engineering: The Current Practice,

Chapman and Hall/CRC, 2011.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Fea-

ture location in source code: A taxonomy and survey,” Jour-

nal of Software: Evolution and Process, vol.25, no.1, pp.53–

95, 2013.

[10] Center of Excellence for Software Traceability, “TraceLab,”

http://www.coest.org/index.php/tracelab/.

[11] Intooitus, “inFusion,” http://www.intooitus.com/products/

infusion.

[12] E. Zhang and Y. Zhang, “Average precision,” Encyclopedia

of Database Systems, pp.192–193, Springer, 2009.

[13] S. Hayashi, M. Saeki, and M. Kurihara, “Supporting refac-

toring activities using histories of program modification,”

IEICE Transactions on Information and Systems, vol.E89-

D, no.4, pp.1403–1412, 2006.

[14] H. Liu, X. Guo, and W. Shao, “Monitor-based instant soft-

ware refactoring,” IEEE Transactions on Software Engineer-

ing, vol.39, no.8, pp.1112–1126, 2013.

[15] T. Komatsuda, S. Hayashi, and M. Saeki, “Supporting pref-

actoring using feature location results,” IEICE Technical

Report, vol.114, no.127, pp.109–114, 2014.

[16] F.A. Fontana, V. Ferme, and M. Zanoni, “Filtering code

smells detection results,” Proc. ICSE, pp.803–804, 2015.

— 6 —


