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ABSTRACT
Because numerous code smells are revealed by code smell detec-
tors, many attempts have been undertaken to mitigate related prob-
lems by prioritizing and filtering code smells. We earlier proposed a
technique to prioritize code smells by leveraging the context of the
developers, i.e., the modules that the developers plan to implement.
Our empirical studies revealed that the results of code smells pri-
oritized using our technique are useful to support developers’ im-
plementation on the modules they intend to change. Nonetheless,
in software change processes, developers often navigate through
many modules and refer to them before making actual changes.
Such modules are important when considering the developers’ con-
text. Therefore, it is essential to ascertain whether our technique can
also support developers on modules to which they are going to re-
fer to make changes. We conducted an empirical study of an open
source project adopting tools for recording developers’ interaction
history. Our results demonstrate that the code smells prioritized us-
ing our approach can also be used to support developers for modules
to which developers are going to refer, irrespective of the need for
modification.
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1 INTRODUCTION
Code smells are often interpreted as indicators of problems or de-
sign flaws in source code [8]. They can be seen as factors that cause
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technical debts. For instance, a class having a God Class code smell
is a class that tends to be packed with functionality from other
classes and which tends to control data of other classes. As a re-
sult, the class is likely to be overly large and complex. This kind of
design flaw can have a distinctly negative effect on software main-
tenance. It affects many perspectives of source code quality such as
understandability and extendibility. Many studies have been con-
ducted to investigate code smell effects [9, 19].

One important problem of current code smell detection is that
the number of outputs is overwhelming. Consequently, developers
do not use static analysis tools such as code smell detectors because
of numerous detected warnings [10]. To resolve this shortcoming,
numerous attempts have been made to reduce the number of code
smells using different factors by filtering and prioritizing the code
smells [1, 3, 7, 17].

Nevertheless, with the limited time available for solving code
smells or improving the quality of the source code in real world sit-
uations, it is preferable to solve code smells in the modules related
to the context of the developers, as reported in the literature. One
characteristic that Murphy-Hill and Black presented in their “Seven
Habits of a Highly Effective Smell Detector” paper [14] is Context-
Sensitivity, which is to suggest code smells that are related to the
current context of developers first. Yamashita et al. [20] also stated
that developers in their study need code smell detectors that support
context-sensitivity. Furthermore, Bavota et al. [2] recommended in
their work that perspectives of developers need to be considered
when recommending refactoring opportunities.

Our earlier work proposed a technique to prioritize code smells
based on the developers’ context [15]. The definition of context
described herein is similar to task context defined by Kersten and
Murphy as “the information–a graph of elements and relationships
of program artifacts–that a programmer needs to know to com-
plete that task” [12]. We estimated the context of developers by
application of an impact analysis technique to textual information,
e.g., summary and description of issues in an issue tracking sys-
tem, to predict the modules that are likely to be locations for mak-
ing changes to resolve issues. Then, we prioritized the list of code
smells based on results obtained using an impact analysis technique.
We evaluated our technique using a set of code smells occurring in
the modules that were actually modified by developers as the oracle
obtainable from source code repositories such as Git or Subversion.
The results confirmed that our technique can be used to support
modules that are going to be modified by developers.

However, to make changes, it is common that developers start
the process by navigating through multiple places and referring to
them before they actually modify the source code. We designated
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the modules to which developers are going to refer as referred mod-
ules and modules to which developers must make actual modifica-
tions as modified modules. When considering the developers’ con-
text to prioritize code smells, it is rational to estimate the modi-
fied modules as the context because those modules are the loca-
tions at which developers are going to make modifications directly.
Nonetheless, the referred modules are also important to be used for
estimation of the context because those modules are the modules
where developers are going to read and comprehend although they
require no modification. Consequently, it is important to investi-
gate whether the context-based prioritization technique is useful to
support both situations when considering the referred modules and
the modified modules as the context of developers. However, in our
previous work, we only studied and confirmed that the technique
might be useful for situations involving modified modules. As a
consequence, one important point remains in our context-based pri-
oritization technique: whether our technique can support not only
the modified modules but also the referred modules.

To bridge the gap as described earlier, we conducted an empirical
study of the use of our technique to support the referred modules.
Such information is obtainable using interaction-recording tools
such as Mylyn [11]. Our result confirmed that our technique can
be used to support the referred modules as well. In other words, if
developers solve code smells according to the results of our tech-
nique, then it can help them improve several aspects of source code
quality in the related modules. Consequently, it might reduce the
cost for their implementation.

The main contribution of this work is a demonstration that the
result of context-based code smells prioritization is useful not only
to support developers during modifications but also during naviga-
tion and reference to source code for resolving issues in an issue
tracking system.

The structure of this paper is organized as follows. Section 2
summarizes our previous context-based code smell prioritization
approach. Section 3 presents a brief introduction to source code in-
teraction history. We then report our empirical study in Section 4,
discuss threats to validity in Section 5, and conclude this paper in
Section 6.

2 CONTEXT-BASED CODE SMELLS
PRIORITIZATION

Our earlier work proposed a technique to prioritize code smells us-
ing the context of developers. The technique emphasized support of
issue-driven software development projects adopting an issue track-
ing system to manage their lists of issues. We simulated a real-world
situation in which, before releasing major or minor versions, the de-
velopment team must complete a list of issues. In this case, because
the list of issues in issue tracking system includes information of the
task that developers must perform, it is useful to estimate the devel-
opers’ context. In other words, we can predict the modules that are
likely to be related to each issue. Because those modules are likely
to be modified by developers, we can regard the modules that are
likely to be modified as an estimation of the developers’ context.

Figure 1 includes an overview of the proposed technique and
the evaluation. The inputs of the approach are a list of change de-
scriptions from the issue tracking system and the source code of the

Figure 1: Overview of the proposed technique and the evalua-
tion.

targeted project. For each change description, we applied impact
analysis to generate a list of modules that are likely to be the loca-
tion for implementing the change. One example of the fundamental
impact analysis technique is the Vector Space Model (VSM), repre-
senting documents and queries as vectors [16]. The technique then
determines the similarity between documents and queries by calcu-
lation of the cosine similarity. In this case, documents are source
code modules; queries are change descriptions. Therefore, we are
using the technique to predict modules that resemble the change de-
scriptions. We detect code smells of the specified project using an
existing code smell detector such as a metric-based technique [13].
Subsequently, we calculate the proposed Context Relevance Index
(CRI) for each code smell based on the result from impact analy-
sis technique. The CRI value represents the relevance of each smell
to the context of developers. Higher values of CRI signify greater
relevance to the context. Finally, the technique outputs the new list
of prioritized smells that is ordered by the CRI value. In summary,
code smells that are likely to be modified by developers for many
issues are put at the top of the list. The evaluations were conducted
by comparing the results with a set of code smells occurring in the
modules that were actually modified by developers. A detailed ex-
planation was presented in our earlier report [15].

3 MYLYN’S INTERACTION HISTORY
Software development teams have been widely adopting version
control systems such as Git or Subversion to keep track of source
code changes. However, one shortcoming of the version control sys-
tem is that it records only code components that have been modified
at the commit time, while in fact, developers also refer to many code
components that they might not have actually modified. To over-
come such a lack of information, many interaction history record-
ing tools such as Mylyn [11] have been proposed. Mylyn records
developers’ activities on the tasks that developers work on, for in-
stance when they select text in the editor. Such interaction events are
recorded in XML file format and are uploaded to the issue tracking
system of each issue on which the developers worked. The attributes
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of each element of interaction event that we are considering include
the following1.

• Kind: type of interaction
• StructureKind: type of artifact interacted upon by devel-

opers
• StructureHandle: the artifact interacted upon by develop-

ers

In Mylyn, when developers select some text in the editor, the in-
teraction event in which the value of Kind is Edit is going to be
recorded. However, such information is insufficient to ascertain
whether developers were referring only to the source code or were
also modifying the source code. Therefore, to classify the referred
and the modified modules, we used this information together with
the information from a version control system. We regard the mod-
ules in the version control system as modified modules and regard
the modules in the interaction history that are not in the version
control system as the referred modules.

4 EMPIRICAL STUDY
4.1 Motivation
As described herein, our previous study used the oracle created
solely based on changes in the version control system. Such in-
formation only contains modules that were changed at the commit
time. However, it is very likely that there are also many other mod-
ules to which developers are going to refer even though they need
not make any modification. Developers might need to understand
those modules to be able to make the actual modification. There-
fore, we want to confirm through this study whether the list of code
smells that is prioritized by our technique can be useful to support
not only the modules that developers are going to modify but also
the modules to which developers are going to refer.

4.2 Study Design
4.2.1 Experimental Implementation. As in our previous work,

we implemented an automated tool for conducting the experiment.
Our tool was designed to connect with other tools such as Trace-
Lab [5, 6] for carrying out impact analysis and inFusion2 for de-
tecting code smells used for this study.

To generate the gold sets or the modified modules based on the
version control system, we used tools proposed by Dit et al. [6].
Their tools generate gold sets by comparing two versions of each
file based on Eclipse’s Abstract Syntax Tree (AST). The result of
the tools is a list of modules that were modified for each commit.

4.2.2 Data Collection. For this study, we used the Mylyn Task
project as our subject because Mylyn projects contains a large
amount of Mylyn interaction history information [18]. We mined
over 700 commits between ver. 3.07–3.21. from its version control
system3. Then, because the developers of Mylyn projects are rec-
ommended to use Eclipse’s plugin to commit changes to Git repos-
itory and because the commits include the URL of the bug that
the developers are solving, we were able to create links between

1https://wiki.eclipse.org/Mylyn/Integrator_Reference
2Unfortunately, inFusion is no longer available.
3https://github.com/eclipse/mylyn.tasks
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Figure 2: Comparison of the nDCG value between results of
modification-based oracle and reference-based oracle.

commits and issues by searching for the pattern of correspond-
ing bug’s URL (such as https://bugs.eclipse.org/bugs/show_bug.
cgi?id=500712) for each commit message. We created 516 links
that included 334 unique issues. Subsequently, we crawled Mylyn’s
issue tracking system according to the URL that we obtained from
commit messages. Because not every developer uploaded the in-
teraction history to the issue tracking system, we had to filter out
issues that did not contain interaction information. The reason be-
hind this is that the interaction history was necessary for our study
to analyze the modules that developers did not modify but referred
to. In all, we obtained 95 issues that satisfy our requirements.

We defined oracles of two types: modification-based and
reference-based. The modification-based oracle is a set of code
smells that appear in the modules that were modified by develop-
ers, while the reference-based oracle is a set of code smells that
appear in the modules that were referred to by developers. When
we generated the oracle, out of 141 detected code smells, besides
code smells that are not related to the context, we obtained 37
code smells in modification-based oracles and 61 code smells in
reference-based oracles. In addition, the code smells that are only
in the reference-based oracle are 27. The code smells that are only
in the modification-based oracle are 3.

4.2.3 Data Analysis. For this assessment, we used Normalized
Discounted Cumulative Gain (nDCG) [4], which is a popular met-
ric for evaluating the quality of ranking documents. nDCG assigns
a higher value to relevant documents appearing in the higher posi-
tion on the list than the relevant documents appearing in the lower
position of the list. Additionally, we can assign the degree of rel-
evance to each relevant item. Therefore, in this study, we can use
nDCG to reflect the quality of our technique, which is used to as-
sign code smells that affect many issues at the top of the list. We
calculated the nDCG value for both the modification-based oracle
and the reference-based oracle.

https://wiki.eclipse.org/Mylyn/Integrator_Reference
https://github.com/eclipse/mylyn.tasks
https://bugs.eclipse.org/bugs/show_bug.cgi?id=500712
https://bugs.eclipse.org/bugs/show_bug.cgi?id=500712
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Table 1: Top 10 Prioritized Code Smell Results

Rank Smell Type Class Name CRI #RIa #MIb

1 God Class TasksUiInternal 7.89 7 4
2 God Class TasksUiPlugin 5.51 9 3
3 God Class TaskListIndex 5.48 3 1
4 God Class AbstractTaskEditorPage 5.36 3 2
5 God Class TaskDataManager 5.29 4 2
6 God Class TracRepositoryConnector 5.26 1 1
7 God Class AttachmentUtil 5.24 4 1
8 God Class SynchronizeTasksJob 5.17 3 0
9 Data Class TaskData 4.97 3 0

10 God Class BugzillaRepositoryConnector 4.69 0 2

aNumber of referring issues
bNumber of modifying issues

4.3 Results and Discussion
Figure 2 presents the results of our study. We obtained an nDCG
value of 0.66 in the case of a modification-based oracle and 0.78
in the case of a reference-based oracle, which indicates that our
technique not only prioritizes code smells that have an effect on
the modules that developers are going to modify but also prioritizes
code smells that have an effect on the modules to which develop-
ers are going to refer. Therefore, if developers solve code smells
according to the list provided by our technique, then it is going to
support them, e.g., make the code easier to understand, not only
when they are modifying source code, but also when they are refer-
ring to the source code.

Table 1 presents the top 10 results of the code smells after be-
ing prioritized with our technique together with the number of is-
sues that refer to and modify the module having the code smells.
For instance, our technique predicted that the God Class code smell
of TasksUiInternal class is related to many issues that developers
must solve with CRI of 7.89. Our investigation of the actual in-
teraction history of developers during the analyzed period revealed
that for seven issues, developers referred to this class without ac-
tually modifying it. Subsequently, we investigated the change his-
tory from the version control system, which revealed that, for four
issues, developers had to modify this class to resolve the issues.
Therefore, if developers solve the code smell of this class before
starting the implementation process, then several perspectives of
this class, such as understandability and extendibility, can be im-
proved. Consequently, the implementation costs of 11 issues related
to this class can be reduced.

In addition, if we consider the case of God Class code smell in
SynchronizeTasksJob class in the table, then it is apparent that no
issue exists in the analyzed period that modified this class. Conse-
quently, solving the code smell in this class does not support any
code modification process of the developers. However, the analysis
result shows that there are three issues to which developers referred
to this class, even though they did not modify it. Therefore, although
solving this code smell might be unable to support developers for
the code modification, it can support developers when they refer to
this code, i.e., improve the source code comprehensibility.

Furthermore, if we analyze the number of oracles as described
earlier, then it is apparent that the code smells that are only in

the reference-based oracle are 27. Such a number is high com-
pared with other numbers such as code smells that are only in the
modification-based oracle, which are only 3. Therefore, we con-
clude that the referred modules have a strong effect on developers’
implementation process and that they should be considered when
considering the developers’ context. In addition, because our tech-
nique can predict numerous code smells that are in reference-based
oracle (e.g., most items in top 10 ranks are predicted correctly), we
can reach the conclusion that our context-based code smells priori-
tization can suggest not only smells in a modified context but also
those in a referred context.

5 THREATS TO VALIDITY
As the main purpose of this study is to present early results of our
study, there are some threats to validity that need to be addressed.
First, we conducted the study on a small scale with only one project.
Second, while other interaction recording tools might be able to
used, we used only Mylyn for this study, and it might have caused
false negatives. Finally, we used only one metric to assess this study.
Nonetheless, we planned to justify these threats by conducting a
larger scale study with different kinds of datasets and tools in the fu-
ture. Additionaly, performing different evaluation schemes such as
different kinds of metrics or with professional developers remains
as a subject for our future work.

6 CONCLUSION
As described herein, we revisited our context-based code smells pri-
oritization to ascertain whether the approach can be useful to sup-
port a situation in which developers refer to source code modules.
We conducted an empirical study with an oracle based on a ver-
sion control system that represents the modules which developers
modified and an oracle based on the interaction history, which rep-
resents the modules to which developers referred to resolve the is-
sues. Our results confirmed that the context-based code smells pri-
oritization can support situations in which developers modify and
refer to source code.
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