
Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki

Department of Computer Science
Tokyo Institute of Technology



INTRODUCTION

2



Code smell[1]

An indicator of a design flaw or a problem 
in the source code

One of the factors that cause technical debt
Increases code component’s fault-proneness

Refactoring

Duplicated Code

(Extract Method)

[1]	M.	Fowler.	Refactoring:	Improving	the	Design	of	Existing	Code.	Addison-Wesley,	1999. 3



Problem

4

The number of 
code smell is 

overwhelming



Code Smells Prioritization

5

[J. ASE 2016]

An Approach to Prioritize 
Code Smells for Refactoring

Vidal et al.

[SBSE 2013]

Prioritization of Code 
Anomalies based on 

Architecture Sensitiveness
Arcoverde et al.

[MTD 2015]

Towards a Prioritization of 
Code Debt: A Code Smell 

Intensity Index
Fontana et al.

[ICSE 2016]

Technical Debt Prioritization 
using Predictive Analytics

Codabux et al.

[ICPC 2016]

Context-Based Code Smells 
Prioritization for Prefactoring

Sae-Lim et al.



CONTEXT-BASED CODE SMELLS 
PRIORITIZATION

6



Method A()
{

_____
_____

}

Problem

7

Method B()
{

_____
_____
_____

}

Blob

Method C()
{

_____
}

.		.		.	

Code smell detection results

1st

50th

100th

I need to implement 
feature X 
in method A()

Relevant !
Method A()
{

_____
_____

}

Problem : 
Results from existing smell detector
do not fit in this situation

.		.		.	

Blob

Blob



Goal

8

Our technique

Smells that are relevant to developers’ context

Original code smell 
detection result

Proposed code smell 
detection result

1st

2nd

3rd

nth

.		.		.	

1st

2nd

3rd

nth

.		.		.	



Approach overview
Bug 123
When 
click…

Bug 123
When 
click…

Bug 123
When 
click…

Change descriptions

Main()
xxx;;

Source code

Scoring

1…
2…
3…

Prioritized smells

List of modules

List of smells

Code smell detection

TraceLab[1]

Impact analysis

[2]

[1]	B.	Dit,	E.	Moritz,	and	D.	Poshyvanyk,	“A	TraceLab-based	Solution	for	Creating,	Conducting,	and	
Sharing	Feature	Location	Experiments,”,	ICPC2012 9

[2]	https://www.intooitus.com/products/infusion



Empirical Study

10

Our technique can prioritize 
code smells occurring in the 
modules that are going to be 
modified

ArgoUML

JabRef

jEdit

muCommander
Code smells

Prioritize
1…
2…
3…

Prioritized smells

Code smells

Modification-
based oracle

VCS

Compare

Conclusion



Software change process[1]

Initiation

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion

[1]	V.	Rajlich,	Software	Engineering:	The	Current	Practice.	Chapman	and	Hall/CRC,	2011	

Identify a 
module to be 
modified

Identify a full set
of modules to be 
modified

Modify source 
code

11

Interaction History

Version Control System

Referred 
Modules

Modified 
Modules



Mylyn

12

Task and application lifecycle management (ALM) 
framework for Eclipse.



Mylyn

13

<InteractionEvent
Delta="null"
EndDate="2009-09-08 18:34:51.838 PDT" 
Interest="1.0" 
Kind="edit"
Navigation="null"
OriginId="org.eclipse.jdt.ui.CompilationUnitEditor" 
StartDate="2009-09-08 18:34:51.838 PDT" 
StructureHandle="=org.eclipse.mylyn.internal.context.

ui{IContextUiHelpIds.java"
StructureKind="java”

/>

Developer selects text in editor



Software change process[1]

Initiation

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion

[1]	V.	Rajlich,	Software	Engineering:	The	Current	Practice.	Chapman	and	Hall/CRC,	2011	

Identify a 
module to be 
modified

Identify a full set
of modules to be 
modified

Modify source 
code

14

Interaction History

Version Control System

Referred 
Modules

Modified 
Modules

✓

?



Software change process[1]

Initiation

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion

[1]	V.	Rajlich,	Software	Engineering:	The	Current	Practice.	Chapman	and	Hall/CRC,	2011	

Identify a 
module to be 
modified

Identify a full set
of modules to be 
modified

Modify source 
code

15

Interaction History

Version Control System

Referred 
Modules

Modified 
Modules

✓

?

Is our technique 
useful for 

referred context?



EMPIRICAL STUDY

16



Overview

17

Compare

1…
2…
3…

Prioritized smells

Code smells Code smells

Reference-
based oracle

Modification-
based oracle

VCS Interaction 
History

Compare

Subject: Mylyn Task 3.07-3.21



Result

18

uIs our technique useful for referred modules?

0.66
0.78

0

0.2

0.4

0.6

0.8

1

Modification-based Reference-based

nD
CG

Our technique can be useful to support both 
modified modules and referred modules



Top 10 results

Rank Smell Type Class Name #RI #MI

1 God TasksUiInternal 7 4
2 God TasksUiPlugin 9 3
3 God TaskListIndex 3 1
4 God AbstractTaskEditorPage 3 2
5 God TaskDataManager 4 2
6 God TracRepositoryConnector 1 1
7 God AttachmentUtil 4 1
8 God SynchronizeTasksJob 3 0
9 Data TaskData 3 0
10 God BugzillaRepositoryConnector 0 2

19

#RI = Number of referring issues
#MI = Number of modifying issues



CONCLUSION

20



Messages

Context-based code smells prioritization

Modified Context Referred Context

Can support both types of context

21


