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Abstract—Source code quality is often measured using code
smell, which is an indicator of design flaw or problem in the
source code. Code smells can be detected using tools such as
static analyzer that detects code smells based on source code
metrics. Further, developers perform refactoring activities based
on the result of such detection tools to improve source code
quality. However, such approach can be considered as reactive
refactoring, i.e., developers react to code smells after they occur.
This means that developers first suffer the effects of low quality
source code (e.g., low readability and understandability) before
they start solving code smells. In this study, we focus on proactive
refactoring, i.e., refactoring source code before it becomes smelly.
This approach would allow developers to maintain source code
quality without having to suffer the impact of code smells.

To support the proactive refactoring process, we propose
a technique to detect decaying modules, which are non-smelly
modules that are about to become smelly. We present empirical
studies on open source projects with the aim of studying the
characteristics of decaying modules. Additionally, to facilitate
developers in the refactoring planning process, we perform a
study on using a machine learning technique to predict decaying
modules and report a factor that contributes most to the
performance of the model under consideration.

Index Terms—code quality; code smell; refactoring;

I. INTRODUCTION

Code smells were introduced by Fowler as an indicator
of a design flaw or problem in the source code [1]. Their
definitions were presented in a descriptive language; therefore,
several studies have interpreted them in a formal manner.
For example, Lanza and Marinescu use source code metrics
to form conditions and combine each condition with logical
operations to detect code smells [2]. Several studies have found
that code smells are related to different aspects of software
development such as maintainability [3], [4], [5]. Therefore, it
is advisable to remove code smells by a refactoring operation
that can improve the quality of the source code and avoid
undesirable consequences.

However, such approach can be considered as reactive
refactoring. We term it reactive because developers basically
react to code smells after they occur in the system. An
advantage of this approach is that it allows developers to focus
on the most problematic part of the source code (smelly code)
rather than handling every part of the source code, which may
be impractical in real life. However, an important disadvantage
of such approach is that, by the time developers are warned
of the code smells by the tools, they have already suffered

the bad effect of the code smells, e.g., low readability and
understandability. In other words, developers cannot prevent
code smells from occurring in the system.

To deal with the problem, in this study, we shift our focus
to proactive refactoring, which is the action of refactoring
source code before it becomes smelly. Similar to the manner in
which code smells are considered as candidates for performing
reactive refactoring, we propose the idea of decaying modules
as candidates for performing proactive refactoring. A decaying
module is a non-smelly module that is about to become smelly.
We measure the quality index of a module by calculating the
module decay index (MDI) that indicates the closeness of a
module to becoming smelly. MDI is used to measure how
bad a non-smelly module is, whereas severity [6] and smell
intensity index [7] are used to measure how bad a smelly
module is. The idea of decaying module can be mainly used
in two ways. First, it can be used to warn developers of the
modules that are getting close to becoming smelly so that
developers can take preventive measures. Second, it can be
used to indicate overall quality of the entire system so that
developers can view the overall status of a project, and not just
the smelly modules. This would allow developers to develop
more proactive strategies for controlling software quality. In
other words, developers can focus on preventing code modules
from becoming smelly rather than waiting until they become
smelly and then resolve the code smells.

The main contributions of this study are as follows.

1) We propose the concept of decaying modules by observ-
ing MDI.

2) We present empirical studies regarding characteristics of
decaying modules.

3) We report an experiment on using a machine learning
approach to predict decaying modules and show that
developers’ context can significantly improve the perfor-
mance of the prediction model.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the definition of decaying modules. Section 3
presents our empirical studies on decaying modules. Section 4
presents an experiment on the prediction approach. Section 5
discusses the threats to validity of this study. Section 6
discusses how decaying modules can be fit into refactoring
prioritization. Section 7 presents the related works. Section 8
concludes this paper.



II. DECAYING MODULE

A. Motivation

To describe the motivation behind the concept of decaying
module, we use a dental metaphor because it has been used
to explain the idea of software quality, e.g., floss and root-
canal refactoring [8]. We draw a parallelism between the
process of removing code smells and tooth decay treatment,
i.e., developers handle code smells after they occur; this is
similar to the act of patients taking care of their tooth decays
after they happen. On the contrary, the process of preventing
code smells is comparable to the process of brushing one’s
teeth every day, i.e., developers prevent code smells from
occurring by refactoring modules that are not yet smelly; this
is similar to the act of brushing one’s teeth to remove small
food particles. However, it is impractical to refactor every
module in the system; therefore, we define the concept of
decaying module to represent a module without code smell
but with progressively worsening quality. If a tooth without
tooth decay is building up plaque, then the plaque becomes
the primary cause of the tooth decay in the future. Considering
the aforementioned example, the concept of decaying module
can be used to support proactive refactoring, i.e., developers
can refactor decaying modules to prevent them from becoming
smelly.

The main objective of decaying modules is to identify
modules with a risk of becoming smelly in the future. This
may be related with an empirical study by Tufano et al.,
which reported that modules that are likely to be affected by
code smells are characterized by specific metrics’ trends [9].
Accordingly, we suspect that observing the distance between
the metric values and the thresholds indicating that the module
will be considered as smelly would enable us to generate a set
of modules that are likely to be affected by code smells.

B. Definition

We define a decaying module as a module that is getting
closer to becoming smelly during a certain period. One way
to detect code smells is to use a metric-based strategy. Such
a strategy detects code smells by considering whether par-
ticular metrics exceed their corresponding thresholds. In this
case, we can use a formula to detect a decaying module. A
decaying module would be a module whose metric values
have not exceeded their thresholds. Therefore, we refer to
code smell detection strategies that use multiple symptoms (or
conditions) to detect code smells. Each symptom is determined
by whether a source code metric, e.g., lines of code (LOC)
exceeds a specific threshold. Logical operations are then used
to combine all the symptoms and identify code smells. For
example, the strategy to detect God class defined by Lanza
and Marinescu [2] can be reformulated as follows.

God class = (VATFD ≥ TATFD) ∧ (VWMC ≥ TWMC) ∧
(VTCC ≤ TTCC)

where VATFD, VWMC, and VTCC are the values of access to
foreign data (ATFD), weighted method count (WMC), and
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Fig. 1. Domain and range of percentage of symptom (PS).

tight capsule cohesion (TCC), respectively. Similarly, TATFD,
TWMC, and TTCC are the thresholds of ATFD, WMC, and TCC,
respectively.

This strategy includes three symptoms, where each symp-
tom is determined by a corresponding metric. For example,
the metric ATFD measures how many foreign attributes are
used by a class. Higher the ATFD, more likely is a class to be
a God class. Therefore, the operation ≥ is used to determine
if the value of ATFD exceeds the threshold; if the former is
true, the symptom holds. On the contrary, the metric TCC
represents the degree of cohesiveness of a class. Lower TCC
value indicates a less cohesive class; this means that the class is
more likely to be a God class. Here, the operation ≤ is used to
determine if the value of TCC is less than the threshold; if the
former is true, the symptom holds. All the symptoms are then
conjunctively combined using and operations to determine the
God class code smell.

Then, we define the following metrics to measure the
closeness of a module to becoming smelly.

1) Percentage of Symptom: First, we define a percentage
of symptom (PS) to measure how close the current value of a
specific metric is to its threshold. PS is measured by metric
m of module x, which is defined as:

PSm (x) =
min{1,Vm (x)/Tm }, if comparator is ≥

min{1, Tm/Vm (x)}, if comparator is ≤,

where Vm is the value of metric m and Tm is the threshold
value of metric m. The min function sets the maximum value
of PS to one.

For example, PS measured by ATFD of module x can be
defined as

PSATFD(x) = min{1,VATFD(x)/TATFD}

because the operator that determines its symptom is ≥. On
the contrary, PS measured by the TCC of module x can be
defined as

PSTCC(x) = min{1, TTCC/VTCC(x)}

because the operator that determines its symptom is ≤.
Figure 1 shows the domain and range of PS. Higher the PS,

closer it is to complete the condition of the symptom. PS of
one indicates that the symptom is completed.

2) Module Decay Index: Next, we define MDI as an
indicator of how close a module is to becoming a code smell.
A MDI is defined for each smell; MDI of smell s can be



calculated by averaging the PS of each symptom measured by
metric m where M = {. . . ,m, . . . } as:

MDIs (x) =
1
|M |

∑
m∈M

PSm (x).

For example, the MDI of God class of module x can be
defined as

MDIGod class(x) =
1
3
{PSATFD(x) + PSWMC(x) + PSTCC(x)}.

Higher the MDI, closer is the module to becoming a code
smell. MDI of one indicates that the module is a code smell.

MDI is also comparable to severity defined by Mari-
nescu [6]. Severity is a metric ranged [1, 10], and it is used to
measure how bad a smelly module is. MDI, however, ranges
from [0, 1) with the purpose of measuring how bad a non-
smelly module is. In other words, MDI can also be considered
as severity of non-smelly modules.

3) Decaying module: In general, a decaying module can be
defined as a module whose MDI has increased over a period of
time. In this paper, we refer to a module as decaying module
when its current MDI has increased from the previous release.

As a first step in defining decaying modules, we use God
class as a subject owing to its simple detection strategy and
the fact that it is a code smell that is often studied in this
research area [10]. However, this approach is also applicable to
other types of code smells that are determined by using logical
operations to combine all symptoms, where each symptom
holds if particular metrics exceed their threshold such as data
class or brain class defined by Lanza and Marinescu [2].

III. DECAYING MODULE: EMPIRICAL STUDY

A. Motivation

This empirical study aims to conduct analyses on charac-
teristics of a decaying module from different perspectives.

First, we empirically investigate the number of decaying
modules that occur between releases. We expect that such
information can be used as a first step to understand the
characteristics of decaying modules. The number of modules
is different depending on the size of the project; therefore,
analyzing absolute numbers may be not useful. We analyze the
ratio of decaying modules to the number of modules that are
modified by developers in each release. This is because module
modification is the main activity during software development,
and it is relatively easy to understand as a comparator.

Second, we study the characteristics of decaying mod-
ules, especially, their future characteristics. In this study, we
consider two characteristics of decaying modules, i.e., the
decaying modules that will be modified and will decay in the
future. If the number of decaying modules that will decay in
the future is higher than that of non-decaying modules, it may
be a sign that decaying modules are important problems that
are worth handling.

TABLE I
DATASET INFORMATION

Project Period No. of releases

Accumulo 2012/03/27 – 2018/07/16 30
Ambari 2013/02/04 – 2018/08/22 33
Derby 2005/08/01 – 2018/05/05 28
Hive 2010/10/27 – 2018/05/18 33

B. Research Questions

The empirical study was conducted with the following
research questions.
RQ1: How many decaying modules are present in each re-

lease compared to the modified modules?
RQ2: What are the future characteristics of the decaying

modules compared to the non-decaying ones?
Details of each research question are explained later.

C. Experimental Setup

1) Experimental Implementation: In this study, as a first
step in studying decaying modules, we limit the target of the
code smell to be the God class. As discussed earlier, God class
is considered one of the most common code smells studied
in this research area. To detect the decaying module, we first
used inFusion ver. 1.9.0 as a static analysis tool to calculate the
metrics of each module. Then, we calculated the PS of each
metric and MDI of each module. Finally, we classify those
modules as decaying modules whose MDIs have increased
from the earlier release.

2) Data Collection: In this study, four open source projects:
Accumulo1, Ambari2, Derby3, and Hive4 were our subjects.
They were selected from a list of active open source projects
of The Apache Software Foundation, which is commonly
used as a subject for open source software study. The dataset
information can be found in Table I.

D. RQ1: How many decaying modules are present in each
release compared to the modified modules?

1) Study Design: To answer this research question, we
counted the number of modules that were modified and the
number of decaying modules between each pair of releases.
The modules that were modified between each pair of releases
were generated using the git log command. Then, we ran
our tool that was explained previously to detect the decaying
modules between each pair of releases. Finally, we calculated
the ratio between the number of modified and decaying
modules.

2) Results and Discussion: Table II lists the result of
our study. The second and third columns show the average
numbers of the modified and decaying modules, respectively.
The last column shows the ratio of the number of modified

1https://accumulo.apache.org/
2https://ambari.apache.org/
3https://db.apache.org/derby/
4https://hive.apache.org/



TABLE II
AVERAGES OF THE NUMBER OF DECAYING AND MODIFIED MODULES

Project No. of modified classes No. of decaying classes Ratio

Accumulo 427.17 50.68 0.12
Ambari 394.34 98.47 0.25
Derby 450.78 72.48 0.16
Hive 627.94 132.17 0.21

and decaying classes. For example, in each release in the
Accumulo project, 427.17 classes were modified and 50.68
were decayed. This yields a ratio of 0.12, i.e., for every
100 modified classes, 12 classes were decayed. The ratios
are varied for different projects: 0.12 for Accumulo, 0.25 for
Ambari, 0.16 for Derby, and 0.21 for Hive. The average ratio
in this study is approximately 0.19. In other words, compared
to modified modules, 19% will become decaying modules.
This result suggests that the decaying modules are not rare
problems and may be worth considering as essential problems
that the developers should handle by considering that almost
20% of the modified modules will have lower code quality.

In conclusion, approximately 19% of the number of
modified modules were decaying modules in each release
on average.

E. RQ2: What are the future characteristics of decaying
modules compared to non-decaying ones?

1) Study Design: Similar to RQ1, we counted the decay-
ing modules with the following two characteristics: 1.) the
decaying modules that will be modified in later releases, and
2.) the decaying modules that will again get decayed in later
releases. Then, we computed the averages of all releases and
calculated the ratio of each. For comparison, similar steps were
applied to the modules that were modified but did not become
decaying modules (i.e., non-decaying modules). We excluded
the releases without decaying modules, e.g., minor releases
that have only few modifications, because we cannot compare
the ratios of decaying and non-decaying modules.

To confirm whether the results are statistically significant,
we conducted statistical tests with the following null hypothe-
ses:
H01: The ratios of decaying modules that will be modified

in later releases are not higher than the ones of non-
decaying modules.

H02: The ratios of decaying modules that will get decayed
in later releases are not higher than the ones of non-
decaying modules.

Accordingly, the following alternative hypotheses corre-
sponding to each null hypothesis can be defined as follows:
Ha1: The ratios of decaying modules that will be modified

in later releases are higher than those of non-decaying
modules.

Ha2: The ratios of decaying modules that will get decayed
in later releases are higher than those of non-decaying
modules.

TABLE III
RESULTS OF WILCOXON SIGNED-RANK TEST

Project H01 H02 H03

Accumulo 0.038 <0.001 <0.001
Ambari 0.130 <0.001 <0.001
Derby 0.571 <0.001 <0.001
Hive 0.046 <0.001 <0.001

Then, we used the Wilcoxon signed-rank test, which is a
non-parametric statistical hypothesis test, to determine any
difference between the decaying and non-decaying modules.

2) Results and Discussion: Figures 2a and 2b illustrate
the results of our study. The bars represent the values of
non-decaying and decaying modules. The values in Fig. 2a
represent the ratio of modules that will be modified in later
releases. We can observe only small, if any, differences in
the projects. For example, the biggest difference is in the
values of the Accumulo project indicating that approximately
94% and 97% of the non-decaying and decaying modules,
respectively were modified in later releases. On the contrary,
both the values of the Derby project are approximately 88%
with slightly higher number of decaying-modules modified
in the later release. Table III shows the result of Wilcoxon
signed-rank test. The cells with p values less than 0.05 are
highlighted in gray. It can be seen that, while the p values of
Accumulo and Hive are less than 0.05, the p values of Ambari
and Derby are higher than 0.05. This means that for Ambari
and Derby we fail to reject the null hypotheses (α = 0.05)
that the ratios of decaying modules that will be modified in
later releases are not higher than the ones of non-decaying
modules. For Accumulo and Hive, although we can reject the
null hypotheses, the differences are very small.

Next, Fig. 2b illustrates the ratios of modules that decayed
in later releases. For example, in the Ambari project, 46% of
the non-decaying modules decayed in later releases. However,
the number for decaying modules is as high as 62%. The
ratios are clearly higher than those of their non-decaying
counterparts. In other words, decaying modules are more likely
to get decayed again in later releases. Additionally, it can
be observed that more than half of the decaying modules in
each project decayed again in later releases. The results of the
Wilcoxon signed-rank test listed in Table III indicate that the
results are statistically significant (α = 0.05). In such cases,
we can reject the null hypotheses that the ratios of decaying
modules that will get decayed in later releases are not higher
than the ones of non-decaying modules.

With these pieces of evidence, we can conclude that, al-
though we could not observe the difference of the ratios of
decaying and non-decaying modules that will be modified in
later releases, the ratios of decaying modules that will get
decayed in later releases is higher than those of non-decaying
modules. In other words, we can conclude that decaying
modules are the modules that have got closer and will likely
get more close to becoming smelly modules. Therefore, we
argue that they are significant problems that should be handled
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Fig. 2. Comparison of averages of the number of decaying and non-decaying classes that will be modified and decay.

before they affect source code quality.
In conclusion, while no difference of the ratios of

decaying and non-decaying modules that will be modified
in later release was detected, decaying modules are more
likely to get decayed in later releases.

IV. DECAYING CLASS: PREDICTION

A. Motivation
As discussed in the previous section, decaying modules are

important problems that are worth considering. However, a
decaying module only represents past and present information,
i.e., whether a module has decayed from the last release. As
shown in the previous section, although decaying modules
are more likely to get decayed again in the future, they also
have a chance of not getting decayed in the next release, i.e.,
their quality may improve. Therefore, knowing that a decaying
module will still be a decaying module in the next release
(its quality will get even lower), can support developers to
determine whether it should be refactored. Therefore, in this
study, we consider the use of a machine learning approach to
predict modules that will become decaying modules in the next
release. Such approach can be implemented by considering the
characteristics of each module (e.g., code quality metrics) as
predictor variables and whether a module will get decayed
in the next release (True or False) as a response variable.
This technique is widely used for defect prediction, where
the characteristics of each module are used to predict whether
the module is defective [11]. Another example that is similar
to this study is the work by Pantiuchina et al. [12] that
proposes to predict code smells. Their work uses source code
quality to predict whether a module is likely to be affected
by code smells in the future. Therefore, in this study, our
aim is to investigate whether their approach is also applicable
to predicting decaying modules. If such an approach can
successfully apply to predicting decaying modules, we can
use its result to support developers when selecting targets for
refactoring.

A scenario that is suitable to this case is the prefactoring
phase, wherein developers refactor the source code to facilitate
their future implementation [13]. In this scenario, developers
can use the prediction result of the modules that will get
decayed in the next release to plan their refactoring strategy.
In prefactoring phase, developers usually have an idea of
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Fig. 3. Training and test data separation.

the changes that they plan to make, i.e., they know the
modules that they are going to change. Such information is
obtained from the concept location and the impact analysis
phase, wherein developers identify the code component that
needs to be modified to satisfy change requirement [13].
We define this as developers’ context [14]; it is similar to
the task context defined by Kersten and Murphy as “the
information–a graph of elements and relationships of program
artifacts–that a programmer needs to know to complete that
task” [15]. In this case, we suspect that developers’ context
may contribute to improving the performance of prediction
models. The underlying reason is that the modules that will
be modified are more likely to get decayed than the modules
that will not be affected by any changes.

B. Research Question

In this section, we presented an empirical study with the
following research questions.
RQ3: Can we use an existing technique to predict decaying

modules?
RQ4: Does developers’ context improve prediction perfor-

mance?
Details of each research question will be discussed in the

later subsections.

C. Experimental Setup

1) Baseline: We set a baseline model inspired by the work
by Pantiuchina et al. that was proposed to predict modules that
will become smelly [12]. Three sets of variables are used as
predictor variables: current code quality, historical code quality
trend, and recent code quality trend. The response variable is
whether the module will get decayed in the next release, i.e.,
after implementing changes that are planned for the release.



2) Variables Construction: We calculated three types of
predictor variables: current code quality, historical code quality
trend, and recent code quality trend. Historical code quality
trend represents the trend of each module’s quality from its
creation until the current release, whereas recent code quality
trend represents the trend of each module’s quality from the
earlier release until the current release. These two types of
variables can be used to supplement each other in case the
quality of a module decreased in the past but increased during
recent activities.

For the variable: current code quality, we use inFusion ver
1.9.0 as a static analysis tool to calculate 34 metrics in addition
to the proposed MDI. For the variable: historical code quality
trend, we compute the regression slope line fitting the value
of each metric from the first to the current release. Finally,
for the variable: recent code quality trend, we compute the
regression slope line fitting the value of each metric from the
earlier to the current release. As a result, we have a total of
105 (35 + 35 + 35) predictor variables.

Consequently, we used the technique proposed in the previ-
ous section to detect decaying modules and record as response
variables.

3) Data Separation: We separated data into training and
test sets as shown in Fig. 3. Initial releases of the source
code were skipped because there is insufficient information to
calculate the slope of each metric. In the first iteration (i = 1),
we trained the model on release 1, and performed a prediction
test on release 2. Then, in the next iteration (i = 2), we trained
the model on release 1–2, and performed a prediction test on
release 3. The iterations were repeated for the whole dataset.
This strategy simulates the situation where developers use all
of the available data to train the model. Such data may be
fewer at the beginning of a project but would increase along
with the development process.

4) Data Preparation: Next, we performed correlation-
based feature selection technique to minimize collinearity
among the predictor variables. For each pair of variables
having Spearman ρ higher than 0.8, we removed one of
the variables. The technique was repeatedly conducted until
there was no pair of variables that met the criteria. Totally,
we removed 16, 19, 15, and 19 variables for the projects:
Accumulo, Ambari, Derby, and Hive, respectively.

Additionally, the dataset that we use in this study can
be considered as imbalanced, i.e., the number of decaying
modules is only a small proportion of all the modules. To avoid
the problem of imbalanced data affecting the performance of
the prediction models, we applied a sub-sample technique to
the dataset. For each training set, we randomly selected non-
decaying modules equal to the number of decaying modules
to balance the classes of response variables.

5) Model Construction: Finally, we constructed prediction
models using the random forest method of the scikit-learn
library [16] and calculated performance of the prediction
models by applying them to the data in the test sets. We
kept default values for the model parameters. Optimizing and
analyzing such parameters remains our future work.
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Fig. 4. AUC values of baseline and context-aware models.

6) Data Analysis: In this study, we use area under the
curve (AUC) of the receiver operating characteristic (ROC)
plot, which is commonly used for evaluating and comparing
the performance of the machine learning model. AUC ranges
from 0 to 1. Higher AUC indicates better performance of the
prediction model. Its value above 0.5 indicates that the model
performs better than random guessing.

D. RQ3: Can we use an existing approach to predict decaying
modules?

1) Study Design: We use the baseline model explained in
the previous subsection to measure prediction performance.
As aforementioned, AUC value above 0.5 indicates that pre-
diction performs better than random guessing. Therefore, if
the median of AUC measured by the baseline is greater than
0.5, we infer that an existing approach can be used to predict
decaying modules.

2) Results and Discussion: Figure 4 shows the performance
of the baseline model of each project. The median values are
0.62, 0.66, 0.58, and 0.62 for Accumulo, Ambari, Derby, and
Hive, respectively. Median values of all the projects are greater
than 0.5; therefore, we can conclude that the existing approach
may be suitable for predicting decaying modules as well.

To conclude, an existing approach may be applicable to
predict decaying modules.

E. RQ4: Does developers’ context improve prediction perfor-
mance?

1) Study Design: We compare the performance of two mod-
els: baseline and context-aware. The baseline model uses the
variables described previously as predictor variables, whereas
the context-aware model uses the developers’ context as an
extra predictor variable. As aforementioned, we regard de-
velopers’ context as the modules that the developers intend
to modify for the next release. We use git log command
to obtain a list of modules that are modified between two
releases. Then, we mark a variable as True if the module is
modified, and False otherwise. It is noteworthy that this way
of representing developers’ context may not be practical as it
assumes perfect knowledge of developers. However, our main
goal of this preliminary study is to examine the potential of
using developers’ context to improve the prediction model. In
other words, we want to know the upper bound performance
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of using developers’ context. Then, we plan to conduct a study
with more practical settings, e.g., using automated approaches
such as impact analysis to estimate developers’ context, in the
future.

To confirm if the results are statistically significant, we
conduct the Wilcoxon signed-rank test with the following null
hypothesis:

H03: Developers’ context does not improve the performance
of prediction model.

Therefore, an alternative hypothesis can be defined as:

Ha3: Developers’ context improves the performance of pre-
diction model.

2) Results and Discussion: Figure 4 shows the result of our
experiment. The box plot shows the values of the performance
of the baseline and context-aware models. As reported in the
earlier RQ, median values of the AUC values for the baseline
model are 0.62, 0.66, 0.58, and 0.62 for Accumulo, Ambari,
Derby, and Hive, respectively. For the context-aware model,
the median values are 0.80, 0.92, 0.84, and 0.88 for Accumulo,
Ambari, Derby, and Hive, respectively. It can be seen that the
context-aware model performs better for every project.

The results of the Wilcoxon signed-rank test are shown
in Table III. It can be seen that the results are statistically
significant (α = 0.05). Therefore, we can conclude that devel-
opers’ context can help improve decaying module prediction
performance significantly.

In conclusion, developers’ context can improve the
performance of the decaying module prediction model.

V. THREATS TO VALIDITY

In this study, we use four open source projects as our sub-
jects. Therefore, the results of this study may not generalize to
other types of projects. Additionally, we conducted the experi-
ment on the prediction model using only random forest method
without performing any parameter optimization. Therefore, the
result may differ in different models and different parameter
settings. It is noteworthy that the primary goal of this study
is not to find the highest performance of the prediction model
but to show that existing techniques from a different research
area can also be applied to this problem and that developers’
context can improve the performance significantly. Moreover,
replicating this study on a larger scale may be beneficial.

VI. DISCUSSION

In this study, we propose the idea of decaying module
that can be used to target non-smelly modules to support
proactive refactoring. However, several studies have shown
that developers normally do not handle code smells [17],
[18]. This phenomenon may be comparable to the fact that
static analysis tools are not used well by developers owing
to the large number of detected warnings [19]. In other
words, the number of code smells is too high for developers
to consider refactoring, thereby resulting in several studies
focusing on filtering and prioritizing code smells [20], [21],
[22]. Here the following simple question arises: Why should
developers handle non-smelly modules when they already
have more than enough smelly modules to handle. In this
context, we propose a guideline presented in Fig. 5 using
quadrant analysis. The vertical axis represents the importance
of the modules, i.e., smelly modules are more important than
decaying ones. This is because smelly modules have bad effect
on the system while decaying modules are yet to have such an
effect; therefore, they can be considered to be less important.
The horizontal axis represents the urgency of the modules,
i.e., context-relevant modules are more urgent than context-
irrelevant ones. The main reason is that although solving code
smells that are irrelevant to developers’ context (e.g., modules
developers plan to modify) may improve the overall quality
of the system, it does not support the developers’ current
activities. This statement is also supported by our previous
study on professional developers showing that developers tend
to refactor the code smells related to their context [20].
Therefore, context-irrelevant modules can be postponed until
they become relevant to developers’ context. Considering
importance and urgency together, it is obvious that smelly
context-relevant modules should have the highest priority and
decaying context-irrelevant modules should have the low-
est priority. However, between decaying context-relevant and
smelly context-irrelevant modules, we argue that decaying
context-relevant modules should be given higher priority than
smelly context-irrelevant modules. As aforementioned, solving
context-irrelevant modules, irrespective of their quality, is not
likely to facilitate planned implementation. On the contrary, in
addition to preventing modules from being affected by code
smells, solving decaying context-relevant modules can help
developers get ready for their implementation.

VII. RELATED WORK

Murphy-Hill and Black used the terms floss refactoring
and root-canal refactoring to refer to different refactoring
tactics [8]. They use frequency and how developers mix refac-
toring with other kinds of program changes to categorize the
two types of refactoring. Floss refactoring refers to frequent
refactoring that is mixed with other types of program changes,
whereas root-canal refactoring refers to infrequent refactoring
that may not be mixed with other types of changes. On the
contrary, in this study, we use the timing and purpose of
refactoring to categorize the two types of refactoring. We
term it reactive refactoring if the operation is applied after



a code smell occurs in the source code with the purpose
of removing the code smell and proactive refactoring if the
operation is applied before a code smell occurs in the source
code with the purpose of preventing a code smell. Therefore,
floss refactoring and root-canal refactoring can be considered
to be both reactive and proactive depending on when and why
the developers perform the refactoring.

One of the work aligned with the idea of proactive refac-
toring is just-in-time refactoring proposed by Pantiuchina et
al. [12]. They proposed an approach to predict code compo-
nents that will be affected by God and complex classes’ code
smells within a specific time. The approach allows developers
to prevent code smells by refactoring source code right before
they are introduced to the system. On the contrary, the idea
of decaying module and module decay index (MDI) proposed
in this study can not only be used to prevent the introduction
of code smells but also to represent the status of the source
code quality of non-smelly modules using the context of code
smells.

The MDI proposed in this study can also be compared to
severity [6] and smell intensity index [7] which were proposed
to measure how bad a code smell is. Such metrics can be used
to prioritize code smells, i.e., more severe code smells should
be refactored first if developers want to improve the overall
quality of systems. MDI can be used in a similar manner;
however, for non-smelly modules. In other words, it can be
used to measure the quality of non-smelly modules so that
developers can notice the quality of the whole system, and not
only smelly modules. Such information may allow developers
to develop new strategies of refactoring by looking at the
whole system and preventing modules from decaying rather
than only reactively remove code smells from the system.

The similar term, code decay, is defined by Eick et al.
in their work as “Code is decayed if it is more difficult to
change than it should be” [23]. They use effort, interval,
and quality as the keys to identify code decay. However, in
this study, our definition is closely related to code smells,
i.e., decaying modules are modules that are getting closer to
becoming smelly. code decay indices (CDIs) are also defined
to quantify symptoms as risk factors. Although CDIs are
mostly computable directly from a version control system,
MDI defined in this study is computed from each module
metrics value and the threshold of the symptoms of the code
smell.

VIII. CONCLUSION

In this study, we propose the idea of decaying module
that can be used to support proactive refactoring that can
prevent code smells from occurring. A decaying module can
be detected by measuring the module decay index (MDI). MDI
can also function as a quality indicator of non-smelly modules.
We conducted empirical studies on decaying modules and
found that 19% of the number of modules that are modified in
each release becomes decaying modules. Additionally, com-
pared to non-decaying modules, decaying modules have higher
tendency to get decayed again in the future. Finally, we studied

the use of a machine learning technique to predict decaying
modules in the next release. We found that use of developers’
context can improve the performance of the prediction model.
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