
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Supporting Proactive Refactoring: An Exploratory Study on
Decaying Modules and Their Prediction∗

Natthawute SAE-LIM†, Nonmember, Shinpei HAYASHI†a), and Motoshi SAEKI††, Members

SUMMARY Code smells can be detected using tools such as a static
analyzer that detects code smells based on source code metrics. Developers
perform refactoring activities based on the result of such detection tools to
improve source code quality. However, such an approach can be considered
as reactive refactoring, i.e., developers react to code smells after they occur.
This means that developers first suffer the effects of low-quality source
code before they start solving code smells. In this study, we focus on
proactive refactoring, i.e., refactoring source code before it becomes smelly.
This approach would allow developers to maintain source code quality
without having to suffer the impact of code smells. To support the proactive
refactoring process, we propose a technique to detect decaying modules,
which are non-smelly modules that are about to become smelly. We present
empirical studies on open source projects with the aim of studying the
characteristics of decaying modules. Additionally, to facilitate developers
in the refactoring planning process, we perform a study on using a machine
learning technique to predict decaying modules and report a factor that
contributes most to the performance of the model under consideration.
key words: code quality, code smells, refactoring

1. Introduction

Code smells were introduced as an indicator of a design flaw
or problem in the source code [3]. Their definitions were
presented in a descriptive language; therefore, several stud-
ies have interpreted them in a formal manner. For example,
Lanza and Marinescu use source code metrics to form con-
ditions and combine each condition with logical operations
to detect code smells [4]. Several studies have found that
code smells are related to different aspects of software de-
velopment, such as maintainability [5]–[7]. Therefore, it is
advisable to remove code smells by a refactoring operation
that can improve the quality of the source code and avoid
undesirable consequences.

However, such an approach can be considered as re-
active refactoring. We term it reactive because developers
basically react to code smells after they occur in the system.
An advantage of this approach is that it allows developers
to focus on the most problematic part of the source code

Manuscript received January 1, 2015.
Manuscript revised January 1, 2015.

†The author is with School of Computing, Tokyo Institute of
Technology, Tokyo, 152–8550 Japan.

††The author is with Department of Software Engineering, Fac-
ulty of Science and Technology, Nanzan University, Nagoya, 466–
8673 Japan.

∗This paper is revised based on [1] and [2], which appeared in
proceedings of the third International Workshop on Refactoring and
proceedings of the 35th IEEE International Conference on Software
Maintenance and Evolution, © 2019 IEEE.

a) E-mail: hayashi@c.titech.ac.jp
DOI: 10.1587/trans.E0.??.1

(smelly code) rather than handling every part of the source
code, which may be impractical in real life. However, an
important disadvantage of such an approach is that, by the
time developers are warned of the code smells by the tools,
they have already suffered the bad effect of the code smells,
e.g., low readability and understandability. In other words,
developers cannot prevent code smells from occurring in the
system.

To deal with the problem, in this study, we shift our fo-
cus to proactive refactoring, which is the action of refactor-
ing source code before it becomes smelly. Both proactive and
reactive refactorings are the same in a sense that developers
apply a tool to source code and perform refactoring. How-
ever, the difference is the target of both types, i.e., reactive
refactoring focuses on the target that affects maintainabil-
ity. In contrast, proactive refactoring focuses on the target
that has not affected maintainability but is likely to do so in
the future. Similar to the manner in which code smells are
considered as candidates for performing reactive refactoring,
we propose the idea of decaying modules as candidates for
performing the proactive refactoring. A decaying module is
a non-smelly module that is about to become smelly. We
measure the quality index of a module by calculating the
module decay index (MDI) that indicates the closeness of a
module to be becoming smelly. MDI is used to measure how
bad a non-smelly module is, whereas severity [8] and smell
intensity index [9] are used to measure how bad a smelly
module is. The idea of decaying modules can be mainly
used in two ways. First, it can be used to warn developers
of the modules that are getting close to becoming smelly so
that developers can take preventive measures. Second, it can
be used to indicate the overall quality of the entire system so
that developers can view the overall status of a project, and
not just the smelly modules. This would allow developers
to develop more proactive strategies for controlling software
quality. In other words, developers can focus on prevent-
ing code modules from becoming smelly rather than waiting
until they become smelly and then resolve the code smells.

This paper is revised based on our previous studies [1],
[2]. The main contributions of this study are as follows.

1. We propose the concept of decaying modules by ob-
serving MDI.

2. We present empirical studies regarding the characteris-
tics of decaying modules.

3. We report experiments on using a machine learning
approach to predict decaying modules and show that

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

developers’ context, even if it is estimated by auto-
mated impact analysis techniques, can improve the per-
formance of the prediction model.

4. We present an investigation on how we can improve the
impact analysis technique to enhance the performance
of the decaying module prediction model further.

The remainder of this paper is organized as follows.
Section 2 presents the definition of decaying modules. Sec-
tion 3 presents our empirical studies on decaying modules.
Section 4 presents an experiment on the prediction approach.
Section 5 discusses the threats to the validity of this study.
Section 6 discusses how decaying modules can be fit into
refactoring prioritization. Section 7 presents the related
work. Section 8 concludes this paper.

2. Concept of Decaying Modules

2.1 Motivation

To describe the motivation behind the concept of decaying
modules, we use a dental metaphor because it has been used
to explain the idea of software quality, e.g., floss and root-
canal refactoring [10]. We draw a parallelism between the
process of removing code smells and tooth decay treatment,
i.e., developers handle code smells after they occur; this is
similar to the act of patients taking care of their tooth decays
after they happen. On the contrary, the process of preventing
code smells is comparable to the process of brushing one’s
teeth every day, i.e., developers prevent code smells from oc-
curring by refactoring modules that are not yet smelly; this
is similar to the act of brushing one’s teeth to remove small
food particles. However, it is impractical to refactor every
module in the system; therefore, we define the concept of
decaying module to represent a module without code smell
but with progressively worsening quality. If a tooth without
tooth decay is building up plaque, then the plaque becomes
the primary cause of tooth decay in the future. Consider-
ing the aforementioned example, the concept of decaying
modules can be used to support proactive refactoring, i.e.,
developers can refactor decaying modules to prevent them
from becoming smelly.

The main difference between code smells and decaying
modules is that decaying modules do not directly affect the
maintainability of the source code. Additionally, while both
code smells and decaying modules are the targets of refactor-
ing, the underlying reasons are different. Code smells require
refactoring because they tend to reduce the maintainability
of the system, whereas decaying modules need refactoring
to prevent such effects from occurring.

The main objective of detecting decaying modules is
to identify modules with a risk of becoming smelly in the
future. This may be related to an empirical study by Tufano
et al., which reported that modules that are likely to be af-
fected by code smells are characterized by specific metrics’
trends [11]. Accordingly, we suspect that observing the dis-
tance between the metric values and the thresholds indicating

that the module will be considered as smelly would enable
us to generate a set of modules that are likely to be affected
by code smells.

2.2 Definition

We define a decaying module as a module that is getting
closer to becoming smelly during a certain period. One
way to detect code smells is to use a metric-based strategy.
Such a strategy detects code smells by considering whether
particular metrics exceed their corresponding thresholds. In
this case, we can use a formula to detect a decaying module.
A decaying module would be a module whose metric values
have not exceeded their thresholds. Therefore, we refer to
code smell detection strategies that use multiple symptoms
(or conditions) to detect code smells. Each symptom is
determined by whether a source code metric, e.g., lines of
code (LOC), exceeds a specific threshold. Logical operations
are then used to combine all the symptoms and identify code
smells. For example, a metric-based strategy to detect God
Class [4] can be reformulated as follows:

God Class = (𝑉ATFD ≥ 𝑇ATFD) ∧
(𝑉WMC ≥ 𝑇WMC) ∧ (𝑉TCC ≤ 𝑇TCC),

where 𝑉ATFD, 𝑉WMC, and 𝑉TCC are the values of access to
foreign data (ATFD), weighted method count (WMC), and
tight capsule cohesion (TCC), respectively. Similarly,𝑇ATFD,
𝑇WMC, and 𝑇TCC are the thresholds of ATFD, WMC, and
TCC, respectively.

This strategy includes three symptoms, where each
symptom is determined by a corresponding metric. For
example, the metric ATFD measures how many foreign at-
tributes are used by a class. The higher the ATFD is, the
more likely it is a class to be a God Class. Therefore, the
operation ≥ is used to determine if the value of ATFD ex-
ceeds the threshold; if the former is true, the symptom holds.
On the contrary, the metric TCC represents the degree of
cohesiveness of a class. A lower TCC value indicates a less
cohesive class; this means that the class is more likely to be
a God Class. Here, the operation ≤ is used to determine if
the value of TCC is less than the threshold; if the former is
true, the symptom holds. All the symptoms are then con-
junctively combined using and operations to determine the
God Class code smell.

Then, we define the following metrics to measure the
closeness of a module to be becoming smelly.

2.2.1 Percentage of Symptom

First, we define a percentage of symptom (PS) to measure
how close the current value of a specific metric is to its
threshold. PS is measured by metric 𝑚 of module 𝑥, which
is defined as:

PS𝑚 (𝑥) =
{

min { 1, 𝑉𝑚 (𝑥)/𝑇𝑚 }, if comparator is ≥
min { 1, 𝑇𝑚/𝑉𝑚 (𝑥) }, if comparator is ≤,

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
3

PS

VT
Non-smelly range Smelly range

0

1

Fig. 1 Domain and range of percentage of symptom (PS).

where 𝑉𝑚 is the value of metric 𝑚 and 𝑇𝑚 is the threshold
value of metric 𝑚. The min function sets the maximum
value of PS to one. For example, PSs measured by ATFD
and TCC of module 𝑥 can be defined as

PSATFD (𝑥) = min{ 1, 𝑉ATFD(𝑥)/𝑇ATFD },
PSTCC (𝑥) = min{ 1, 𝑇TCC/𝑉TCC (𝑥) }

because the operator that determines their symptom are ≥
and ≤, respectively.

Figure 1 shows the domain and range of PS. The higher
the PS is, the closer it is to complete the condition of the
symptom. PS of one indicates that the symptom is com-
pleted.

2.2.2 Module Decay Index

We define MDI as an indicator of how close a module is to
becoming a smell. A MDI is defined for each smell; MDI of
smell 𝑠 is calculated by averaging the PS of each symptom
measured by metric 𝑚 where 𝑀𝑠 = { . . . , 𝑚, . . . } as

MDI𝑠 (𝑥) =
1

|𝑀𝑠 |
∑

𝑚∈𝑀𝑠

PS𝑚 (𝑥).

For example, the God Class MDI of module 𝑥 is defined as

MDIGod Class (𝑥) =
PSATFD (𝑥) + PSWMC (𝑥) + PSTCC (𝑥)

3
.

The higher the MDI is, the closer the module is to become a
smell. MDI of one indicates that the module is a smell.

MDI is also comparable to the severity defined by Mari-
nescu [8]. Severity is a metric ranged [1, 10], and it is used
to measure how bad a smelly module is. MDI, however,
ranges from [0, 1) with the purpose of measuring how bad
a non-smelly module is. In other words, MDI can also be
considered as the severity of non-smelly modules.

2.2.3 Decaying Module

In general, a decaying module can be defined as a module
whose MDI has increased over a period of time. In this
paper, we refer to a module as a decaying module when its
current MDI has increased from the previous release. More
precisely, a decaying module 𝑚 regarding a smell 𝑠 at release
𝑛 is defined as

Decaying𝑠 (𝑚@𝑛) = MDI𝑠 (𝑚@𝑛) > MDI𝑠 (𝑚@𝑛−1)

PS WMC

PS TCC

MDI God Class

PS ATFD

Fig. 2 The decaying process of AmbariServer.

where 𝑚@𝑛 denotes a module 𝑚 at release 𝑛. We also use
Decaying(𝑚@𝑛) with omiting the smell type 𝑠 if it is obvious.

As a first step in defining decaying modules, we use
God Class as a subject owing to its simple detection strategy
and the fact that it is a code smell that is often studied in this
research area [12]. However, this approach is also applicable
to other types of code smells that are determined by using
logical operations to combine all symptoms, where each
symptom holds if particular metrics exceed their thresholds
such as Data Class or Brain Class defined by Lanza and
Marinescu [4].

Example. Figure 2 shows the evolution of AmbariS-
erver class module in Apache Ambari project†. We plot-
ted the values of PSATFD, PSWMC, PSTCC, and MDIGod Class
across 33 releases. Also, we highlighted the decays of the
module, i.e., the increases of MDI value, in red. This module
went through 11 decays between releases during its evolu-
tion and eventually became God Class. Of the metrics used
in detecting God Class, the TCC value was lower than the
threshold (𝑇TCC = 1/3) from the beginning, and its PS value
(PSTCC) was always 1 in this plot. The ATFD and WMC
value gradually increased as the module evolves, and the
MDI value gradually increased accordingly. Finally, in re-
lease 2.5.1, the module met the conditions of three metrics
and was detected as a God Class. In this way, the fact that a
module decays continuously means that it becomes gradually
closer to a smell, and it may finally become a smell.

Smells are related to not only maintainability issues but
also faults, which adversely affects software quality [13],
[14]. This fact may lead to a hypothesis that refactoring
modules that have already been smelly might be too late.
Also, removing smells is tough. Literature shows developers
have difficulties to devote dedicated resources to removing
smells outside of their normal development activities, and
it is common to refactor modules during modifying them
in their activities [15]. To adapt to such a style, proactive
refactoring is effective to apply refactorings preventively be-

†https://github.com/apache/ambari/blob/trunk/ambari-server/src/
main/java/org/apache/ambari/server/controller/AmbariServer.java

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Dataset information
Project Period # releases
Accumulo 2012/03/27–2018/07/16 30
Ambari 2013/02/04–2018/08/22 33
Derby 2005/08/01–2018/05/05 28
Hive 2010/10/27–2018/05/18 33

fore target modules become smelly, rather than traditional
reactive refactoring.

We think that decaying modules can be refactored by
applying the same refactoring patterns to code smells. De-
caying modules can be considered as weak instances of code
smells, whose metric values do not exceed thresholds to be
regarded as problematic. Just as refactoring for code smells
reduces the complexity, which leads to bringing the metric
values below the thresholds, refactoring for decaying mod-
ules also reduces the complexity to make the metric values
away from the thresholds and prevent the future generation of
smells. For example, for God Class smells, we mitigate con-
centrated responsibilities by extracting classes. Decaying in
terms of God Class can be considered a sign of concentrated
responsibilities or bloated individual responsibilities. There-
fore, extracting classes should also be appropriate refactor-
ing operations for them before a problematic situation is
happening.In addition, there may be cases where applying
refactorings is difficult because of the difficulty in splitting
responsibilities, as is the case with normal refactorings of
code smells.

3. Empirical Study of Decaying Modules

This empirical study aims to conduct analyses on the char-
acteristics of a decaying module from different perspectives.
The empirical study was conducted with the following re-
search questions (RQs). Their details are explained later.

RQ1: How many decaying modules are present in each re-
lease compared to the modified modules?

RQ2: What are the future characteristics of the decaying
modules compared to the non-decaying ones?

3.1 Experimental Setup

Experimental Implementation. In this study, as a first
step in studying decaying modules, we limit the target of the
code smell to be the God Class. As discussed earlier, God
Class is considered one of the most common code smells
studied in this research area. To detect the decaying module,
we first used inFusion ver. 1.9.0 as a static analysis tool to
calculate the metrics of each module. Then, we calculated
the PS of each metric and MDI of each module. Finally, we
classify those modules as decaying modules whose MDIs
have increased from the earlier release.

Data Collection. In this study, four open source

projects: Accumulo†, Ambari††, Derby†††, and Hive††††
were our subjects. They were selected from a list of active
open source projects of The Apache Software Foundation,
which is commonly used as a subject for open source soft-
ware study. The dataset information can be found in Table 1.

3.2 RQ1: How many decaying modules are present in each
release compared to the modified modules?

Motivation. We expect that such information can be used
as a first step to understand the characteristics of decaying
modules. The number of modules is different depending on
the size of the project; therefore, analyzing absolute numbers
may not be useful. We analyze the ratio of decaying modules
to the number of modules that are modified by developers
in each release. This is because module modification is
the main activity during software development, and it is
relatively easy to understand as a comparator.

3.2.1 Study Design

To answer this RQ, we counted the modules that were modi-
fied and the decaying modules between each pair of releases.
The modules that were modified between each pair of re-
leases were generated using the git-log command. We
excluded modified modules after they become smelly be-
cause we focus on the comparison between modified mod-
ules and decaying modules, and our definition of decaying
modules does not capture further decaying after modules
become smelly. Then, we ran our tool that was explained
previously to detect the decaying modules between each pair
of releases. Finally, we calculated the ratio between the
number of modified and decaying modules.

3.2.2 Results and Discussion

Figure 3 represents the number of modified classes, the num-
ber of decaying classes, and the ratio of them, respectively.
For the number of modified classes, we can observe sim-
ilar distributions for all projects except for Ambari, which
tends to have the lowest number of modified classes among
all projects. For the number of decaying classes, we can
see that Hive has the largest distribution among the four
projects. For the ratio, we can observe the similar distribu-
tions between Accumulo and Derby, and between Ambari
and Hive.

To simplify the results, we summarize the averages of
each value in Table 2. The second and third columns show
the average numbers of the modified and decaying modules,
respectively. The last column shows the ratio of the number
of modified and decaying classes. For example, in each re-
lease in the Accumulo project, 415.45 classes were modified,

†https://accumulo.apache.org/
††https://ambari.apache.org/
†††https://db.apache.org/derby/
††††https://hive.apache.org/

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
5

(a) # modified modules. (b) # decaying modules. (c) Ratio.

Fig. 3 The number of decaying modules, modified modules, and the ratio between them.

Table 2 Averages of the number of decaying and modified modules
Project # modified modules # decaying modules Ratio
Accumulo 415.45 50.68 0.12
Ambari 369.63 98.47 0.27
Derby 403.59 72.48 0.18
Hive 578.84 132.17 0.23

and 50.68 were decayed. This yields a ratio of 0.12, i.e., for
every 100 modified classes, 12 classes were decayed. The
ratios are varied for different projects: 0.12 for Accumulo,
0.27 for Ambari, 0.18 for Derby, and 0.23 for Hive. The aver-
age ratio in this study is approximately 0.20. In other words,
compared to modified modules, 20% will become decaying
modules. This result suggests that the decaying modules are
not rare problems and may be worth considering as essential
problems that the developers should handle by considering
that almost 20% of the modified modules will have lower
code quality.

In conclusion, approximately 20% of the number of
modified modules were decaying modules in each release
on average.

3.3 RQ2: What are the future characteristics of decaying
modules compared to non-decaying ones?

Motivation. We study the characteristics of decaying mod-
ules, especially their future characteristics. We consider two
characteristics of decaying modules, i.e., the decaying mod-
ules that will be modified and will decay in the future. If the
number of decaying modules that will decay in the future is
higher than that of non-decaying modules, it may be a sign
that decaying modules are important problems that are worth
handling.

3.3.1 Study Design

Similar to RQ1, we counted the decaying modules with the
following two characteristics: 1) the decaying modules that
will be modified in later releases, and 2) the decaying mod-
ules that will again get decayed in later releases. Then, we
computed the averages of all releases and calculated the ra-
tio of each. For comparison, similar steps were applied to
the modules that were modified but did not become decay-
ing modules, i.e., non-decaying modules. Similar to RQ1,
we excluded modified modules after they become smelly.

We excluded the releases without decaying modules, e.g.,
minor releases that have only a few modifications, because
we cannot compare the ratios of decaying and non-decaying
modules.

More precisely, the sets of decaying modules and non-
decaying modules at release 𝑛 used in this study are defined
as follows:

𝑀dec
@𝑛 = {𝑚@𝑛 | Decaying(𝑚@𝑛) },

𝑀dec∗
@𝑛 = {𝑚@𝑛 | ¬Decaying(𝑚@𝑛)∧

Modified(𝑚@𝑛) ∧ ¬Smelly(𝑚@𝑛−1) }

where Modified(𝑚@𝑛) and Smelly(𝑚@𝑛) respectively denote
that 𝑚@𝑛 is modified and smelly at release 𝑛. For the given
set of target modules 𝑀@𝑛 at release 𝑛, which is either 𝑀dec

@𝑛

or 𝑀dec∗
@𝑛 , the ratios for 1) and 2) are computed as

𝑅mod
@𝑛 =

|{𝑚@𝑛 ∈ 𝑀@𝑛 | ∃𝑘 > 𝑛 · Modified(𝑚@𝑘) }|
|𝑀@𝑛 |

,

𝑅dec
@𝑛 =

|{𝑚@𝑛 ∈ 𝑀@𝑛 | ∃𝑘 > 𝑛 · Decaying(𝑚@𝑘) }|
|𝑀@𝑛 |

.

To confirm whether the results are statistically signif-
icant, we conducted statistical tests with the following null
and alternative hypotheses:

H01 / Ha1: The ratios of decaying modules that will be
modified in later releases are not higher / higher than
the ones of non-decaying modules.

H02 / Ha2: The ratios of decaying modules that will get de-
cayed in later releases are not higher / higher than the
ones of non-decaying modules.

Then, we used the Wilcoxon signed-rank test, which is
a non-parametric statistical hypothesis test, to determine any
difference between the ratios of decaying and non-decaying
modules. We did not use any parametric tests because we
did not assume a specific distribution for the ratios.

3.3.2 Results and Discussion

Figure 4 illustrates the results of our study. The bars repre-
sent the values of non-decaying and decaying modules. The
values in Fig. 4a represent the ratio of modules that will be
modified in later releases. We can observe only small, if

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(a) Modified ratio. (b) Decay ratio.

Fig. 4 Averages of the number of decaying and non-decaying classes that will be modified and decay.

Table 3 Results of Wilcoxon signed-rank test
Project H01 H02 H03

Accumulo 0.300 0.013 <0.001
Ambari 0.204 <0.001 <0.001
Derby 0.070 <0.001 <0.001
Hive 0.074 <0.001 <0.001

any, differences in the projects. For example, the biggest dif-
ference is in the values of the Derby project, indicating that
approximately 89% and 91% of the non-decaying and de-
caying modules were respectively modified in later releases.
Table 3 shows the result of Wilcoxon signed-rank test. The
cells with 𝑝 values less than 0.05 are highlighted in gray. It
can be seen that the 𝑝 values of all four projects are higher
than 0.05. This means that we fail to reject the null hypothe-
ses (𝛼 = 0.05) that the ratios of decaying modules that will
be modified in later releases are not higher than the ones of
non-decaying modules.

Figure 4b illustrates the ratios of modules that decayed
in later releases. For example, in the Ambari project, 53% of
the non-decaying modules decayed in later releases. How-
ever, the number of decaying modules is as high as 65%. The
ratios are clearly higher than those of their non-decaying
counterparts. In other words, decaying modules are more
likely to get decayed again in later releases. Additionally, it
can be observed that more than half of the decaying mod-
ules in each project, except for Derby, decayed again in later
releases. The results of the Wilcoxon signed-rank test listed
in Table 3 indicate that the results are statistically significant
(𝛼 = 0.05). In such cases, we can reject the null hypotheses
that the ratios of decaying modules that will get decayed in
later releases are not higher than the ones of non-decaying
modules.

With these pieces of evidence, we can conclude that,
although we could not observe the difference of the ratios
of decaying and non-decaying modules that will be mod-
ified in later releases, the ratios of decaying modules that
will get decayed in later releases are higher than those of
non-decaying modules. In other words, we can conclude
that decaying modules are the modules that have got closer
and will likely get more close to becoming smelly modules.
Therefore, we argue that they are significant problems that
should be handled before they affect source code quality.

In conclusion, while no difference of the ratios of

decaying and non-decaying modules that will be modified
in later releases was detected, decaying modules are more
likely to get decayed in later releases.

4. Predicting Decaying Modules

As discussed in the previous section, decaying modules are
important problems that are worth considering. However, a
decaying module only represents past and present informa-
tion, i.e., whether a module has decayed from the last release.
As shown in the previous section, although decaying mod-
ules are more likely to get decayed again in the future, they
also have a chance of not getting decayed in the next release,
i.e., their quality may be improved. Therefore, knowing that
a decaying module will still be a decaying module in the
next release (its quality will get even lower) can support de-
velopers to determine whether it should be refactored. In
other words, the prediction approach can help developers
prioritize decaying modules for refactoring.

When considering modules for refactoring, one possible
way is to refactor modules with high MDI value. However, as
mentioned earlier, modules that tend to affect the maintain-
ability of the system are the modules with code smells, i.e.,
smelly modules. In contrast, modules without code smells,
i.e., clean modules, do not have such an effect. Modules with
high MDI value, while they are close to becoming smelly,
are not smelly. Therefore, we do not consider them as the
target of refactoring regarding the problems of source code.
On the other hand, modules whose MDI value is increas-
ing are more likely to become smelly modules in the future.
Consequently, such modules will require refactoring. There-
fore, it is recommended to refactor modules that MDI value
is getting higher rather than focusing on the modules with
high MDI value.

In this study, we consider the use of a machine learn-
ing approach to predict modules that will become decaying
modules in the next release. Such an approach can be imple-
mented by considering the characteristics of each module,
e.g., code quality metrics, as predictor variables and whether
a module will get decayed in the next release (True or False)
as a response variable. This technique is widely used for
defect prediction, where the characteristics of each module
are used to predict whether the module is defective [16].
Since an example that is similar to this study is the work by
Pantiuchina et al. [17] that proposes to predict code smells,

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
7

Training data

Code quality
Current Historical Recent

1._______
2._______
3._______
4._______

Decaying modules Estimated

Static Analysis

Detector
Change descriptions

Bug #123
…………
……..
…
…

Test data

Static Analysis

Model
Construction

Trained model

1 …..
2 …..
3 ….
4 ….

Predicted results

Impact
Analysis

Class foo()
{

….
….

}

Source code

Code quality
Current Historical Recent

1._______
2._______
3._______
4._______

Modules

Estimated
modules

modules

Change descriptions

Bug #123
…………
……..
…
…

Impact
Analysis

Class foo()
{

….
….

}

Source code

Modules

RQ3
RQ4

RQ4

RQ4

RQ5

RQ5

RQ5

Fig. 5 Decaying modules prediction approach.

we can use it as a baseline approach.
A scenario that is suitable to this case is the prefactoring

phase, wherein developers refactor the source code to facili-
tate future implementation [18]. In this scenario, developers
can use the prediction result of the modules that will get
decayed in the next release to plan their refactoring strategy.
In the prefactoring phase, developers usually have an idea
of the changes that they plan to make, i.e., they know the
modules that they are going to change. Such information is
obtained from the concept location and the impact analysis
phases, wherein developers identify the code component that
needs to be modified to satisfy change requirement [18]. We
define this as developers’ context [19]; it is similar to the task
context defined by Kersten and Murphy as “the information–
a graph of elements and relationships of program artifacts–
that a programmer needs to know to complete that task” [20].
Predictions made by the trained model can alert developers to
specific modules. If a future decay is predicted for modules
to be modified or related to the ongoing tasks, developers
examine whether such decay can actually occur based on
their future implementation plan. Based on the examination,
the module may be included in the prefactoring process to
prevent a future generation of smells. Perfect prediction is
difficult in machine learning, and predictions may include
falses. Rather than blindly accepting all predictions, refac-
toring activities can be facilitated by using predictions as a
supplement to improve developers’ awareness of potential
smells. In addition in this case, we suspect that developers’
context may contribute to improving the performance of pre-
diction models. The underlying reason is that the modules
that will be modified are more likely to get decayed than the
modules that will not be affected by any changes.

Also, we investigate the possibility of the use of au-
tomated impact analysis techniques to estimate such a de-
velopers’ context for the decaying module prediction. This
investigation is aimed to meet a realistic situation that the de-
veloper who uses the system may not have perfect knowledge
of the locations of the changes.

In this section, we present an empirical study with the
following RQs. Details of each RQ will be discussed in the
later subsections.

RQ3: Can we use an existing technique to predict decaying
modules?

RQ4: Can developers’ context improve prediction perfor-
mance?

RQ5: Can developers’ context estimated by IR-based impact
analysis technique improve prediction performance?

RQ6: How can we further improve the performance of the
prediction model?

4.1 Experimental Setup

The idea of this approach is to use the information of the
current release to predict modules that are going to decay in
the next release. Figure 5 shows an overview of the approach.

Baseline. We set a baseline model inspired by the work
by Pantiuchina et al. that was proposed to predict modules
that will become smelly [17]. The left part of Fig. 5 rep-
resents an overview of the baseline approach. Three sets
of variables are used as predictor variables: current code
quality, historical code quality trend, and recent code quality
trend. The response variable is whether the module will get
decayed in the next release, i.e., after implementing changes
that are planned for the release.

Variables Construction. We calculated three types
of predictor variables: current code quality, historical code
quality trend, and recent code quality trend. Historical code
quality trend represents the trend of each module’s qual-
ity from its creation until the current release, whereas recent
code quality trend represents the trend of each module’s qual-
ity from the earlier release until the current release. These
two types of variables can be used to supplement each other
in case when the quality of a module decreased in the past but
increased during recent activities. For the variable: current
code quality, we use inFusion ver 1.9.0 as a static analysis
tool to calculate 34 metrics in addition to the proposed MDI.

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 4 Metrics used in this study
Label Metric Name
ALD Access to Local Data
AMW Average Method Weight
ATFD Access to Foreign Data
BOVR Base-class Overriding Ratio
BUR Base-class Usage Ratio
CBO Coupling Between Objects
CPFD Capsules Providing Foreign Data
CRIX Criticality Index
CW Class Weight
DIT Depth of Inheritance Tree
MDI Module Decay Index
HIT Height of Inheritance Tree
ICDO Incoming Coupling Dispersion for an Operation
LCC Loose Capsule Cohesion
LCOM Lack of Cohesion of Methods
LDA Locality of Data Accesses
LOC Lines of Code
NAS Number of Added Services
NOA Number of Attributes
NOACCM Number of Accessor Methods
NOAM Number of Abstract Methods
NOCHLD Number of Children
NOM Number of Methods
NOPRTA Number of Protected Attributes
NOPRTM Number of Protected Methods
NOPUBA Number of Public Attributes
NOPUBM Number of Public Methods
NOVRM Number of Overriding Methods
OCDO Outgoing Coupling Dispersion for an Operation
PNAS Percentage of Newly Added Services
RFC Response for a Class
SPIDX Specialization Index
SUM_LOC Sum of Lines of Code
TCC Tight Capsule Cohesion
WOC Weighted Operation Count

R1 R2 R3

R1 R2 R3 R4

R1 R2 R3 R4 Rn

Training Test

… Rn

R4 Rn

…

…

…

i = 1

i = 2

i = n

Fig. 6 Training and test data separation.

The metrics used in this study are shown in Table 4. For
the variable: historical code quality trend, we compute the
regression slope line fitting the value of each metric from the
first to the current release. Finally, for the variable: recent
code quality trend, we compute the regression slope line fit-
ting the value of each metric from the earlier to the current
release. As a result, we have a total of 105 (35 + 35 + 35)
predictor variables. Consequently, we used the technique
proposed in the previous section to detect decaying modules
and record them as response variables.

Data Separation. We separated data into training and
test sets as shown in Fig. 6. Initial releases of the source
code were skipped because there is insufficient information
to calculate the slope of each metric. In the first iteration
(𝑖 = 1), we trained the model on release 1 and performed
a prediction test on release 2. Then, in the next iteration
(𝑖 = 2), we trained the model on release 1–2 and performed
a prediction test on release 3. The iterations were repeated
for the whole dataset. This strategy simulates the situation
where developers use all of the available data to train the

Table 5 Metrics removed in each project
Metric Accumulo Ambari Derby Hive
ALD 7 7 7 7
CPFD 7 7 7 7
LCC 7 7 7 7
LDA 7 7 7 7
NOPUBM 7
OCDO 7 7 7 7
PNAS 7 7 7 7
RFC 7 7 7 7
SPIDX 7 7 7 7
SUM_LOC 7 7 7 7
WOC 7 7 7 7
Historical CPFD Trend 7
Historical LCC Trend 7 7 7 7
Historical OCDO Trend 7 7 7 7
Historical PNAS Trend 7
Historical SUM_LOC Trend 7 7 7
Historical WOC Trend 7 7
Historical RFC Trend 7
Recent LCC Trend 7 7 7
Recent OCDO Trend 7 7 7 7
Recent SUM_LOC Trend 7 7 7 7
Recent WOC Trend 7
removed variables 16 19 15 19

model. Such data may be fewer at the beginning of a project
but would increase along with the development process.

Data Preparation. Next, we performed a correlation-
based feature selection technique to minimize collinearity
among the predictor variables. For each pair of variables
having Spearman 𝜌 higher than 0.8, we removed one of the
variables. The technique was repeatedly conducted until
there was no pair of variables that met the criteria. The
removed variables are shown in Table 5. Additionally, the
dataset that we use in this study can be considered as im-
balanced, i.e., the number of decaying modules is only a
small proportion of all the modules. To avoid the problem of
imbalanced data affecting the performance of the prediction
models, we applied a sub-sample technique to the dataset.
Note that we did not use any modules in our training and test
sets after they become smelly, similar to RQ1 and RQ2.

Model Construction. Finally, we constructed predic-
tion models using the random forest and calculated the per-
formance of the prediction models by applying them to the
data in the test sets. We kept default values for the model
parameters. Optimizing and analyzing such parameters re-
mains our future work.

Data Analysis. In this study, we use the area under the
curve (AUC) of the receiver operating characteristic (ROC)
plot, which is commonly used for evaluating and comparing
the performance of the machine learning model. AUC ranges
from 0 to 1. Higher AUC indicates better performance of
the prediction model. Its value above 0.5 indicates that the
model performs better than random guessing.

4.2 RQ3: Can we use an existing approach to predict de-
caying modules?

Motivation. An example that is similar to this study is
the work by Pantiuchina et al. [17] that proposes to predict
code smells. Their work uses source code quality to predict
whether a module is likely to be affected by code smells in

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
9

Fig. 7 AUC values of baseline and context-aware models.

the future. Therefore, in this study, our aim is to investi-
gate whether their approach is also applicable to predicting
decaying modules. If such an approach can successfully ap-
ply to predicting decaying modules, we can use its result to
support developers when selecting targets for refactoring.

4.2.1 Study Design

We use the baseline model explained in the previous subsec-
tion to measure prediction performance. As aforementioned,
AUC value above 0.5 indicates that prediction performs bet-
ter than random guessing. Therefore, if the median of AUC
measured by the baseline is greater than 0.5, we infer that an
existing approach can be used to predict decaying modules.

4.2.2 Results and Discussion

Figure 7 shows the performance of the baseline model of each
project. The median values are 0.62, 0.66, 0.58, and 0.62 for
Accumulo, Ambari, Derby, and Hive, respectively. Median
values of all the projects are greater than 0.5; therefore, we
can conclude that the existing approach may be suitable for
predicting decaying modules as well.

To conclude, an existing approach may be applicable
to predict decaying modules.

4.3 RQ4: Can developers’ context improve prediction per-
formance?

Motivation. As mentioned earlier, developers’ context refers
to modules that developers need to modify. For supporting
the prefactoring phase, we suspect that developers’ context
may contribute to improving the performance of prediction
models. The main reason is that modules that developers are
going to make changes are more likely to decay than modules
that are not going to be impacted by any changes. In this RQ,
we conduct a study under the assumption that developers
have perfect knowledge of their context. It is noteworthy
that even in this situation, the prediction approach is still
necessary because we cannot identify decaying modules only
from developers’ context. The underlying reason was shown
in the result of RQ1, where only approximately 19% of the
modified modules were decaying modules in each release.
However, assuming perfect knowledge of developers may not
be a realistic setting because the situation that developers

know every module to be modified beforehand is rare in
large-scale projects. Nevertheless, the main purpose of this
RQ is to examine the potential of using developers’ context
to improve the prediction model. In other words, we want to
know the upper bound performance of using the developers’
context rather than its practical performance.

4.3.1 Study Design

We compare the performance of two models: baseline and
context-aware (upper-bound). The baseline model uses
the variables described previously as predictor variables,
whereas the context-aware model uses the developers’ con-
text as an extra predictor variable. As aforementioned, we
regard developers’ context as the modules that the developers
intend to modify for the next release, which is shown in the
right part of Fig. 5. We use git-log command to obtain
a list of modules that are modified between two releases.
Then, we mark a variable as True if the module is modified,
and False otherwise. To confirm if the results are statistically
significant, we conduct the Wilcoxon signed-rank test with
the following null and alternative hypotheses:

H03 / Ha3: Developers’ context does not improve / improves
the performance of prediction model.

4.3.2 Results and Discussion

Figure 7 shows the result of our experiment. The box plot
shows the values of the performance of the baseline and
context-aware (upper-bound) models. As reported in the
earlier RQ, median values of the AUC values for the baseline
model are 0.62, 0.66, 0.58, and 0.62 for Accumulo, Ambari,
Derby, and Hive, respectively. For the context-aware model,
the median values are 0.80, 0.92, 0.84, and 0.88 for them,
respectively. It can be seen that the context-aware model
performs better for every project.

The results of the Wilcoxon signed-rank test are shown
in Table 3. It can be seen that the results are statistically
significant (𝛼 = 0.05). Therefore, we can conclude that
developers’ context can help improve decaying module pre-
diction performance significantly.

In conclusion, developers’ context can improve the
performance of the decaying module prediction model.

4.4 RQ5: Can developers’ context estimated by IR-based
impact analysis technique improve prediction perfor-
mance?

Motivation. To mitigate the gap between the real situation
and the study in RQ4, which was conducted based on the as-
sumption that the developer has to input perfect information
to the system manually, we propose an alternative approach
that does not rely on perfect knowledge of developers. By
using the results of an automated impact analysis technique
to represent developers’ context, we suspect that it can also
improve the performance of the model without the need of

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 6 Optimized parameters of IR-based impact analysis techniques
Project Technique Cut point
Accumulo BM25 20
Ambari BM25 40
Derby VSM 30
Hive BM25 10

perfect knowledge from developers. However, since such
techniques do not have perfect accuracy, it is sensible that
such improvement is smaller than using the perfect knowl-
edge of developers.

4.4.1 Study Design

We obtain a list of issues of each project from their issue
tracking systems†. Then, we extract the summary, descrip-
tion, and the release that the issue was implemented. For
each issue, we applied an impact analysis to generate loca-
tions that are likely to be changed to complete the issue. In
this study, we focus on IR-based impact analysis because it
requires minimum information to perform, i.e., it takes only
the change descriptions and source code as inputs of the
technique. The IR-based impact analysis works by calculat-
ing the textual similarity between an issue and source code.
We consider the similarity score determined by the impact
analysis technique as a probability that a particular module
will be modified. Then, we calculate the Context Relevance
Index (CRI), which was proposed in our prior work [19].
The CRI of a module can be calculated by the summation
of the similarity score in all issues that contains the mod-
ule. The CRI represents the relevance of each module to the
context of developers. A higher value of CRI means higher
relevance to the context, i.e., more likely to be modified. We
then create a new variable representing the CRI value.

In order to calculate the CRI value, we need to spec-
ify two parameters: the technique used by IR-based impact
analysis and the cut point when calculating CRI. The tech-
nique used by IR-based impact analysis determines how the
data is represented and how the similarity is calculated while
the cut point determines the number of modules used when
calculating CRI. In this study, we adopt four fundamental
IR-based impact analysis techniques which are often studied
in impact analysis research: Vector Space Model (VSM),
Latent Semantic Indexing (LSI), Latent Dirichlet allocation
(LDA), and Okapi BM25 (BM25). For the cut point, we use
10, 20, 30, and 40, which are usually used in the previous
research [19], [21]. For each project, we try all combinations
of each impact analysis technique and cut point, e.g., VSM
with 10 cut point or VSM with 20 cut point. We then finally
select the best combination of each project to use in this
study. The underlying reason is that we want to simulate the
real-world setting where parameters of the technique are op-
timized for each project before utilizing the technique. The
best combination of each project can be found in Table 6.

Finally, similarly to RQ3, we compare the accuracy of

†https://issues.apache.org/jira/secure/Dashboard.jspa

Table 7 Results of Wilcoxon signed-rank tests and the Cliff’s delta effect
size tests

Project 𝑝 value Cliff’s delta
Accumulo <0.001 0.293 (small)
Ambari 0.237 0.067 (negligible)
Derby 0.007 0.382 (medium)
Hive 0.002 0.218 (small)

the prediction model between the baseline and the model
with CRI value. Similarly to previous RQs, we conduct the
Wilcoxon signed-rank test with the following null and alter-
native hypotheses to confirm the statistically significance.

H04 / Ha4: Developers’ context estimated using IR-based
impact analysis technique does not improve / improves
the performance of prediction model.

In addition, we calculate Cliff’s delta (𝑑) as a measure
of the magnitude of the improvement. The Cliff’s delta is
interpreted based on the threshold by Romano et al. [22]:
negligible for |𝑑 | < 0.147, small for 0.147 ≤ |𝑑 | < 0.33,
medium for 0.33 ≤ |𝑑 | < 0.474, and large for 0.474 ≤ |𝑑 |.

4.4.2 Results and Discussion

Figure 7 shows the accuracy of the prediction model between
the baseline model, the context-aware model using IR-based
impact analysis techniques to estimate developers’ context,
and the context-aware upper bound models. When compar-
ing the accuracy between the baseline and IR-based models,
we can observe that the IR-based model tends to have higher
performance than the baseline model. Specifically, the me-
dian of the AUC values have been improved from 0.62 to
0.67 for Accumulo, from 0.66 to 0.67 for Ambari, from 0.58
to 0.65 for Derby, and from 0.62 to 0.66 for Hive.

Table 7 shows the results of Wilcoxon sign-rank tests
and Cliff’s delta effect size tests. The cells with 𝑝 values less
than 0.05 and Cliff’s delta higher than 0.147 (not negligible)
are highlighted in gray. The results of the Wilcoxon signed-
rank test shows that the results are statistically significant
at 𝛼 = 0.05 except for Ambari project. Therefore, for the
projects other than Ambari, we can reject the null hypothesis
and conclude that developers’ context estimated by IR-based
impact analysis technique can improve the performance of
the prediction model. Furthermore, Cliff’s delta values show
that the result has a small effect for Accumulo and Hive,
medium effect for Derby, and negligible effect for Ambari.
So, we can see that the improvements are not negligible for
all projects except for Ambari.

However, when we compare the improvement of the
performance of the prediction model between IR-based and
upper bound models, we can see that the improvements of
IR-based models are much lower than the ones of the upper
bound model. The result is as expected because the improve-
ment of the upper bound model assumes perfect knowledge
of developers, but the impact analysis technique relies on
change descriptions to estimate the context. We can con-
clude that the IR-based impact analysis technique has a po-

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
11

tential of representing developers’ context, although using
only textual change descriptions and source code as inputs.

In conclusion, developers’ context estimated by IR-
based impact analysis technique can improve the perfor-
mance of the decaying module prediction model.

4.5 RQ6: How can we further improve the performance of
prediction model?

Motivation. As discussed in earlier sections, while the con-
text estimated by existing IR-based impact analysis tech-
niques can help improve the performance of a prediction
model, the improvements are still low comparing to the sit-
uation of perfect knowledge of developers. One reason for
such small improvement may be the low accuracy of the IR-
based impact analysis, i.e., the high number of false positives
and the low number of true positives. If the impact analy-
sis technique results in many false positives, they will be-
come noises that may obstruct the prediction model instead
of helping them identify decaying modules. Furthermore,
if the number of true positives is low, the impact analysis
techniques can predict only a part of the correct answers
and fail to detect the rest and, therefore, provide insufficient
information to the prediction model. To this end, many ap-
proaches have been proposed to improve the accuracy of
impact analysis techniques, such as combining an IR-based
approach with extra information [23]. Nevertheless, even
the state-of-the-art approach is still far from being perfect.
Although the research community has been working on im-
proving the accuracy of impact analysis techniques, it is still
unclear whether high accuracy impact analysis techniques
can improve the decaying module prediction model. Thus,
to obtain empirical evidence, we artificially tune the accuracy
of impact analysis techniques and observe the relationship
between the accuracy of an impact analysis technique and a
decaying module prediction model. We expect the result to
be useful for the future direction of impact analysis research.

4.5.1 Study Design

We conducted an analysis under the assumption that mitigat-
ing the problems of high false positives and low true positives
can improve the performance of the prediction model. We
artificially modified the result of an IR-based impact analysis
technique in two steps, which are inspired by the task input
generation approach of a feature location study [24]. First,
we decrease the number of false positives by randomly re-
moving false positives from the result. Second, we increase
the number of true positives by randomly adding false nega-
tives to the result. We refer to the ratio that we decrease the
number of false positives as False Positive Decrement Ratio
(FPDR) and to the ratio that we increase the number of true
positives as True Positive Increment Ratio (TPIR). Both of
the ratios are from 0.0 to 1.0 with the step of 0.1. After
performing the modification, we recalculate the CRI and use
it as an exploratory variable of the prediction model in the
same way as RQ5. Finally, we calculate the performance of

each model for comparison.

4.5.2 Results and Discussion

Figure 8 represents the heat map of the AUC of the prediction
model. The vertical axis represents the values of TPIR, while
the horizontal axis represents the values of FPDR. Each cell
represents the AUC value of each setting. The brighter color
shows a higher AUC, while the darker color shows the lower
AUC values. In general, we can observe that AUC values
tend to have a higher value in the top right corner of the
heat map (e.g., in Ambari project). This result suggests that
the more we decrease the number of false positives, and the
more we increase the number of true positives, the higher
AUC values become. Moreover, when we observe the value
with low TPIR, we can see that increasing FPDR does not
significantly improve the AUC values. This may indicate
that increasing the number of true positives should be given
higher priority than decreasing the number of false positives.

Technically, decreasing the number of false positives
may be accomplished by complimenting an IR-based ap-
proach with other approaches such as a dynamic analysis
approach. For example, we can use execution trace to filter
irrelevant modules from the result of an IR-based approach,
which may result in a lower number of false positives [21].
On the other hand, increasing the number of true positives
can be done by combining the IR-based approach with a
technique such as mining software repositories (MSR). For
instance, MSR approach can adopt association mining rules
to detect modules that were often modified together in the
past and use that information to detect the modules that may
not be found by only IR-based approach [21]. While com-
bining both techniques together have been shown to improve
the accuracy of impact analysis techniques [21], one down-
side is that it requires extra information which may or may
not be available depending on the projects.

To sum up, whereas improving the accuracy of the
impact analysis techniques by decreasing the number of
false positives and increasing the number of true positives
can improve decaying modules prediction, we should give
higher priority to increasing the number of true positives.

5. Threats to Validity

In this study, we use four open source projects as our sub-
jects. Therefore, the results of this study may not generalize
to other types of projects. Additionally, we conducted the
experiment on the prediction model using only the random
forest method without performing any parameter optimiza-
tion. Therefore, the result may differ in different models and
different parameter settings. It is noteworthy that the primary
goal of this study is not to find the highest performance of the
prediction model but to show that existing techniques from
a different research area can also be applied to this problem
and that developers’ context can improve the performance
significantly. Moreover, replicating this study on a larger
scale may be beneficial.

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPDR

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

TP
IR

0.7 0.69 0.73 0.72 0.72 0.73 0.73 0.73 0.76 0.72 0.7

0.7 0.7 0.72 0.72 0.73 0.71 0.74 0.73 0.75 0.71 0.73

0.69 0.71 0.71 0.72 0.7 0.71 0.72 0.7 0.73 0.73 0.7

0.71 0.69 0.71 0.7 0.7 0.7 0.72 0.7 0.71 0.74 0.73

0.68 0.7 0.69 0.7 0.71 0.71 0.69 0.72 0.73 0.73 0.73

0.66 0.67 0.68 0.7 0.68 0.69 0.7 0.7 0.7 0.68 0.69

0.66 0.68 0.67 0.68 0.69 0.69 0.7 0.7 0.69 0.69 0.71

0.66 0.67 0.67 0.67 0.68 0.67 0.68 0.69 0.72 0.69 0.67

0.67 0.68 0.68 0.66 0.69 0.69 0.67 0.67 0.67 0.68 0.67

0.67 0.67 0.66 0.67 0.66 0.67 0.68 0.67 0.68 0.65 0.7

0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.64 0.64 0.68

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPDR

0.72 0.73 0.73 0.73 0.73 0.72 0.74 0.74 0.76 0.79 0.8

0.71 0.71 0.72 0.73 0.72 0.72 0.72 0.74 0.74 0.77 0.79

0.71 0.72 0.71 0.72 0.72 0.72 0.73 0.74 0.74 0.76 0.79

0.7 0.7 0.7 0.72 0.73 0.72 0.72 0.72 0.75 0.75 0.76

0.69 0.71 0.7 0.71 0.71 0.7 0.71 0.72 0.74 0.75 0.76

0.69 0.69 0.69 0.7 0.7 0.69 0.7 0.71 0.71 0.73 0.75

0.7 0.69 0.7 0.69 0.69 0.71 0.69 0.7 0.71 0.73 0.74

0.69 0.69 0.69 0.67 0.69 0.71 0.69 0.69 0.69 0.71 0.73

0.66 0.68 0.67 0.69 0.68 0.67 0.68 0.68 0.69 0.7 0.72

0.67 0.67 0.66 0.66 0.67 0.68 0.68 0.68 0.68 0.69 0.69

0.67 0.66 0.67 0.66 0.67 0.67 0.67 0.67 0.68 0.67 0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPDR

0.64 0.66 0.67 0.65 0.66 0.68 0.68 0.68 0.69 0.71 0.7

0.66 0.66 0.66 0.66 0.69 0.68 0.68 0.69 0.68 0.71 0.68

0.66 0.65 0.65 0.66 0.66 0.67 0.67 0.69 0.69 0.7 0.69

0.67 0.65 0.64 0.65 0.68 0.67 0.67 0.67 0.7 0.7 0.67

0.65 0.65 0.66 0.64 0.65 0.67 0.67 0.68 0.69 0.71 0.66

0.64 0.65 0.66 0.63 0.66 0.66 0.65 0.66 0.69 0.67 0.67

0.63 0.61 0.63 0.65 0.64 0.65 0.66 0.65 0.65 0.67 0.66

0.61 0.62 0.63 0.64 0.63 0.65 0.64 0.65 0.66 0.68 0.66

0.62 0.6 0.62 0.61 0.64 0.64 0.64 0.62 0.65 0.66 0.67

0.63 0.61 0.61 0.61 0.63 0.62 0.62 0.64 0.64 0.65 0.66

0.63 0.61 0.59 0.61 0.59 0.6 0.6 0.61 0.63 0.63 0.64

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPDR

0.73 0.73 0.74 0.74 0.76 0.75 0.76 0.77 0.78 0.76 0.74

0.72 0.73 0.72 0.73 0.74 0.74 0.75 0.73 0.76 0.76 0.73

0.72 0.72 0.73 0.72 0.72 0.71 0.73 0.73 0.75 0.75 0.72

0.7 0.73 0.71 0.72 0.71 0.71 0.71 0.73 0.72 0.72 0.73

0.72 0.7 0.69 0.7 0.7 0.69 0.72 0.71 0.72 0.72 0.69

0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.69 0.71 0.68

0.67 0.68 0.68 0.68 0.69 0.67 0.68 0.66 0.66 0.68 0.67

0.66 0.66 0.67 0.66 0.66 0.65 0.66 0.66 0.67 0.68 0.66

0.66 0.66 0.67 0.67 0.66 0.65 0.65 0.65 0.67 0.65 0.66

0.63 0.65 0.66 0.65 0.65 0.64 0.65 0.65 0.64 0.66 0.66

0.65 0.64 0.64 0.64 0.65 0.65 0.64 0.62 0.63 0.64 0.63

(a) Accumulo. (b) Ambari. (c) Derby. (d) Hive.

Fig. 8 Comparison of the prediction model performance at different TPIR and FPDR.

In addition, in this study, as we use the module’s name
as a primary key when conducting analyses, the case of
renaming is not considered. This may impact the number of
decaying modules in our study.

One significant threat to validity when using change
descriptions to estimate developers’ context lies in software
repositories. For example, developers may make some mod-
ifications unrelated to any issue in the issue tracking system.
In this situation, impact analysis techniques will fail to in-
clude such modifications in the estimated list. In addition,
as we rely on commit messages to identify the true positives
of each issue, if developers do not put the details of the issue
to the commit messages, our technique will fail to identify
the true positives. We mitigated this threat by filtering the
projects that have a high ratio of commits that include issue
ID (higher than 80%) based on the list by Miura et al. [25].
This can ensure that most of the changes were related to the
issues in the issue tracking system.

6. Discussion

In this study, we propose the idea of decaying modules that
can be used to target non-smelly modules to support proac-
tive refactoring. However, several studies have shown that
developers normally do not handle code smells [26], [27].
This phenomenon may be comparable to the fact that static
analysis tools are not used well by developers owing to a
large number of detected warnings [28]. In other words, the
number of code smells is too high for developers to consider
refactoring, thereby resulting in several studies focusing on
filtering and prioritizing code smells [29]–[31]. Here the
following simple question arises: Why should developers
handle non-smelly modules when they already have more
than enough smelly modules to handle.

In this context, we propose a guideline presented in
Fig. 9 using quadrant analysis. The vertical axis repre-
sents the importance of the modules, i.e., smelly modules
are more important than decaying ones. This is because
smelly modules have a bad effect on the system [13], [14]
while decaying modules are not yet found to have such an
effect; therefore, they can be considered to be less important.
The horizontal axis represents the urgency of the modules,

Context-relevant Context-irrelevant

Sm
el

ly
D

ec
ay

in
g

Im
po

rta
nc

e

Urgency

Fig. 9 Quadrant analysis of refactoring target prioritization.

i.e., context-relevant modules are more urgent than context-
irrelevant ones. The main reason is that although solving
code smells that are irrelevant to developers’ context (e.g.,
modules developers plan to modify) may improve the over-
all quality of the system, it does not support the developers’
current activities. This statement is also supported by our
previous study on professional developers showing that de-
velopers tend to refactor the code smells related to their
context [29]. Therefore, context-irrelevant modules can be
postponed until they become relevant to developers’ context.

Considering importance and urgency together, it is ob-
vious that smelly context-relevant modules should have the
highest priority, and decaying context-irrelevant modules
should have the lowest priority. However, between decay-
ing context-relevant and smelly context-irrelevant modules,
we argue that decaying context-relevant modules should be
given higher priority than smelly context-irrelevant modules.
As aforementioned, solving context-irrelevant modules, ir-
respective of their quality, is not likely to facilitate planned
implementation. On the contrary, in addition to preventing
modules from being affected by code smells, solving decay-
ing context-relevant modules can help developers get ready
for their implementation.

7. Related Work

Murphy-Hill and Black used the terms floss refactoring and
root-canal refactoring to refer to different refactoring tac-
tics [10]. They use frequency and how developers mix
refactoring with other kinds of program changes to cate-
gorize the two types of refactoring. Floss refactoring refers
to frequent refactoring that is mixed with other types of pro-

SAE-LIM et al.: SUPPORTING PROACTIVE REFACTORING: AN EXPLORATORY STUDY ON DECAYING MODULES AND THEIR PREDICTION
13

gram changes, whereas root-canal refactoring refers to infre-
quent refactoring that may not be mixed with other types of
changes. On the contrary, in this study, we use the timing and
purpose of refactoring to categorize the two types of refac-
toring. We term it reactive refactoring if the operation is
applied after a code smell occurs in the source code with the
purpose of removing the code smell and proactive refactor-
ing if the operation is applied before a code smell occurs in
the source code with the purpose of preventing a code smell.
Therefore, floss refactoring and root-canal refactoring can be
considered to be both reactive and proactive depending on
when and why the developers perform the refactoring. In the
case of root-canal refactoring, when developers reserve time
specifically for refactoring, they can apply decaying module
prediction at the same time when they detect code smells as
targets for refactoring. In the case of floss refactoring, when
developers make a change on a given module, the tool can
warn the developers if the module is a decaying module.

One of the work aligned with the idea of proactive refac-
toring is just-in-time refactoring proposed by Pantiuchina et
al. [17]. They proposed an approach to predict code compo-
nents that will be affected by God and complex classes’ code
smells within a specific time. The approach allows develop-
ers to prevent code smells by refactoring source code right
before they are introduced to the system. On the contrary,
the idea of decaying module and module decay index (MDI)
proposed in this study can not only be used to prevent the
introduction of code smells but also to represent the status
of the source code quality of non-smelly modules using the
context of code smells.

The MDI proposed in this study can also be compared
to severity [8] and smell intensity index [9] which were pro-
posed to measure how bad a code smell is. Such metrics
can be used to prioritize code smells, i.e., more severe code
smells should be refactored first if developers want to im-
prove the overall quality of systems. MDI can be used in a
similar manner; however, for non-smelly modules. In other
words, it can be used to measure the quality of non-smelly
modules so that developers can notice the quality of the
whole system, and not only smelly modules. Such infor-
mation may allow developers to develop new strategies of
refactoring by looking at the whole system and preventing
modules from decaying rather than only reactively remove
code smells from the system.

The similar term, code decay, is defined by Eick et al.
in their work as “Code is decayed if it is more difficult to
change than it should be” [32]. They use effort, interval,
and quality as the keys to identify code decay. However, in
this study, our definition is closely related to code smells,
i.e., decaying modules are modules that are getting closer
to becoming smelly. Code decay indices (CDIs) are also
defined to quantify symptoms as risk factors. Although
CDIs are mostly computable directly from a version control
system, MDI defined in this study is computed from each
module metrics value and the threshold of the symptoms of
the code smell.

Moreover, in addition to representing the location that

should be refactored, code smells are also used to describe
characteristics of source code. For instance, Takahashi et
al. successfully used code smell information to improve the
accuracy of bug localization [33], [34]. Nevertheless, it is
obvious that such a technique cannot be used on non-smelly
modules as there is no such metric to indicate the quality
of non-smelly modules. Thus, in addition to being used for
supporting proactive refactoring, we expect MDI to be used
to describe characteristics of source code that can be applied
to other research fields as well.

8. Conclusion

In this study, we propose the idea of decaying modules that
can be used to support proactive refactoring that can prevent
code smells from occurring. A decaying module can be de-
tected by measuring the module decay index (MDI). MDI can
also function as a quality indicator of non-smelly modules.
We conducted empirical studies on decaying modules and
found that 19% of the number of modules that are modified
in each release becomes decaying modules. Additionally,
compared to non-decaying modules, decaying modules have
a higher tendency to get decayed again in the future. Finally,
we studied the use of a machine learning technique to predict
decaying modules in the next release. We found that the use
of developers’ context can improve the performance of the
prediction model.

Our future work includes the definition of MDI and
decaying modules for other types of code smell. We also plan
to conduct a study on the effect of decaying modules on the
maintainability of the source code. In addition, using other
time units for measuring decaying modules also remains as
our future work.

Acknowledgments

This work was partly supported by JSPS Grants-in-Aid for
Scientific Research Numbers JP18K11238 and JP21H04877.

References

[1] N. Sae-Lim, S. Hayashi, and M. Saeki, “Toward proactive refac-
toring: An exploratory study on decaying modules,” Proc. third
International Workshop on Refactoring (IWOR’19), pp.1–10, 2019.

[2] N. Sae-Lim, S. Hayashi, and M. Saeki, “Can automated impact anal-
ysis techniques help predict decaying modules?,” Proc. 35th IEEE
International Conference on Software Maintenance and Evolution
(ICSME’19), pp.541–545, 2019.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[4] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice,
Springer, 2006.

[5] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?,” Proc. 28th IEEE International Conference
on Software Maintenance (ICSM’12), pp.306–315, 2012.

[6] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” Proc.
35th International Conference on Software Engineering (ICSE’13),
pp.682–691, 2013.

[7] Z. Soh, A. Yamashita, F. Khomh, and Y.G. Guéhéneuc, “Do code

14
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

smells impact the effort of different maintenance programming ac-
tivities?,” Proc. 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER’16), pp.393–402,
2016.

[8] R. Marinescu, “Assessing technical debt by identifying design flaws
in software systems,” IBM J. Res. Dev., vol.56, no.5, pp.9:1–9:13,
2012.

[9] F.A. Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering code
smells detection results,” Proc. 37th International Conference on
Software Engineering (ICSE’15), pp.803–804, 2015.

[10] E. Murphy-Hill and A.P. Black, “Refactoring tools: Fitness for pur-
pose,” IEEE Softw., vol.25, no.5, 2008.

[11] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell
bad (and whether the smells go away),” IEEE Trans. Softw. Eng.,
vol.43, no.11, pp.1063–1088, 2017.

[12] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of
current knowledge,” J. Softw. Maint. Evol., vol.23, no.3, pp.179–202,
2011.

[13] F. Khomh, M. Di Penta, Y.G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empir. Softw. Eng., vol.17, no.3, pp.243–275,
2012.

[14] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability
of code smells: A large scale empirical investigation,” Empir. Softw.
Eng., vol.23, no.3, pp.1188–1221, 2018.

[15] D. Silva, N. Tsantalis, and M.T. Valente, “Why we refactor? Con-
fessions of GitHub contributors,” Proc. 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering
(FSE’16), pp.858–870, 2016.

[16] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw.
Eng., vol.22, no.10, pp.751–761, 1996.

[17] J. Pantiuchina, G. Bavota, M. Tufano, and D. Poshyvanyk, “Towards
just-in-time refactoring recommenders,” Proc. 26th IEEE/ACM
International Conference on Program Comprehension (ICPC’18),
pp.312–315, 2018.

[18] V. Rajlich, Software Engineering: The Current Practice, Chapman
and Hall – CRC, 2011.

[19] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based approach to
prioritize code smells for prefactoring,” J. Softw. Evol. Proc., vol.30,
no.6:e1886, pp.1–24, 2018.

[20] M. Kersten and G.C. Murphy, “Using task context to improve pro-
grammer productivity,” Proc. 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’06),
pp.1–11, 2006.

[21] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” Proc. 34th International
Conference on Software Engineering (ICSE’12), pp.430–440, 2012.

[22] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using t-test
and cohen’s d for evaluating group differences on the nsse and other
surveys,” Annual meeting of the Florida Association of Institutional
Research, pp.1–33, 2006.

[23] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” J. Softw. Evol. Proc., vol.25,
no.1, pp.53–95, 2013.

[24] T. Ishio, S. Hayashi, H. Kazato, and T. Oshima, “On the effectiveness
of accuracy of automated feature location technique,” Proc. 20th
Working Conference on Reverse Engineering, pp.381–390, 2013.

[25] K. Miura, S. McIntosh, Y. Kamei, A.E. Hassan, and N. Ubayashi,
“The impact of task granularity on co-evolution analyses,” Proc.
10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM’16), pp.1–10, 2016.

[26] A. Yamashita and L. Moonen, “Do developers care about code
smells? An exploratory survey,” Proc. 20th Working Conference

on Reverse Engineering (WCRE’13), pp.242–251, 2013.
[27] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,

“An experimental investigation on the innate relationship between
quality and refactoring,” J. Syst. Softw., vol.107, pp.1–14, 2015.

[28] B. Johnson, Y. Song, E.R. Murphy-Hill, and R.W. Bowdidge,
“Why don’t software developers use static analysis tools to find
bugs?,” Proc. 35th International Conference on Software Engineer-
ing (ICSE’13), pp.672–681, 2013.

[29] N. Sae-Lim, S. Hayashi, and M. Saeki, “An investigative study on
how developers filter and prioritize code smells,” IEICE Trans. Inf.
Syst., vol.101, no.7, pp.1733–1742, 2018.

[30] S.A. Vidal, C. Marcos, and J.A. Díaz-Pace, “An approach to priori-
tize code smells for refactoring,” Autom. Softw. Eng., vol.23, no.3,
pp.501–532, 2016.

[31] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing
code-smells correction tasks using chemical reaction optimization,”
Softw. Qual. J., vol.23, no.2, pp.323–361, 2015.

[32] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus,
“Does code decay? Assessing the evidence from change management
data,” IEEE Trans. Softw. Eng., vol.27, no.1, pp.1–12, 2001.

[33] A. Takahashi, N. Sae-Lim, S. Hayashi, and M. Saeki, “A preliminary
study on using code smells to improve bug localization,” Proc. 26th
IEEE/ACM International Conference on Program Comprehension
(ICPC’18), pp.324–327, 2018.

[34] A. Takahashi, N. Sae-Lim, S. Hayashi, and M. Saeki, “An extensive
study on smell-aware bug localization,” J. Syst. Softw., vol.178,
no.110986, pp.1–17, 2021.

Natthawute Sae-Lim received a B.E. degree
in computer engineering from King Mongkut’s
Institute of Technology Ladkrabang in 2012. He
received M.E. and Ph.D. degrees in computer
science from Tokyo Institute of Technology in
2016 and 2019, respectively. He was a post-
doctoral researcher in School of Computing at
Tokyo Institute of Technology. His research in-
terests include empirical software engineering
and mining software repositories.

Shinpei Hayashi received a B.E. degree
in information engineering from Hokkaido Uni-
versity in 2004. He also respectively received
M.E. and D.E. degrees in computer science from
Tokyo Institute of Technology in 2006 and 2008.
He is currently an associate professor in School
of Computing at Tokyo Institute of Technology.
His research interests include software evolution
and software development environment.

Motoshi Saeki received D.E. degree in com-
puter science from Tokyo Institute of Technol-
ogy, in 1983. He was a professor in School of
Computing at Tokyo Institute of Technology. He
is currently a professor in Department of Soft-
ware Engineering at Nanzan University. His re-
search interests include requirements engineer-
ing, software design methods, and computer sup-
ported cooperative work (CSCW).

