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SUMMARY Code smells are indicators of design flaws or problems in
the source code. Various tools and techniques have been proposed for de-
tecting code smells. These tools generally detect a large number of code
smells, so approaches have also been developed for prioritizing and filter-
ing code smells. However, lack of empirical data detailing how developers
filter and prioritize code smells hinders improvements to these approaches.
In this study, we investigated ten professional developers to determine the
factors they use for filtering and prioritizing code smells in an open source
project under the condition that they complete a list of five tasks. In to-
tal, we obtained 69 responses for code smell filtration and 50 responses for
code smell prioritization from the ten professional developers. We found
that Task relevance and Smell severity were most commonly considered
during code smell filtration, while Module importance and Task relevance
were employed most often for code smell prioritization. These results may
facilitate further research into code smell detection, prioritization, and fil-
tration to better focus on the actual needs of developers.
key words: code smells, code smell filtration, code smell prioritization,
practitioner’s perspective

1. Introduction

Code smells were first defined to represent problems in
source code possibly caused by bad design decisions [2], [3].
This definition mostly applies to descriptive languages, so
many studies have aimed to interpret these smells in a for-
mal manner. In particular, several previous techniques use
source code metrics to detect code smells [4]–[8]. In addi-
tion, many attempts have been made to detect code smells
using other information such as historical data [9], [10].

However, results from such techniques are numerous
because of the large volume of source code. Therefore, the
task of screening code smells is left to developers as they are
unlikely to be able to solve all code smells due to time con-
straints. The task of screening code smells can be divided
into two steps. The first step deals with code smell filtration,
i.e., developers select only a subset of code smells that they
think should be addressed at the moment. Subsequently,
they prioritize the results of the filtration process in the sec-
ond step, i.e., decide the order in which the code smells
should be handled. To support this task, many code smell
filtration and prioritization techniques have been proposed.
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The techniques have focused on different methods such as
a severity-based technique where code smells with higher
severity are given higher priority [11]–[13], a context-based
technique where code smells are prioritized according to the
specific contexts of developers [14], or by using combina-
tions of multiple factors to prioritize code smells [15]–[17].

Even though the research community has developed
several approaches to support the code smell detection pro-
cess, there is still a need for better tools from practition-
ers [18]. This may indicate that the approaches are not
aligned with practitioners’ actual needs. However, improv-
ing these approaches has been hindered by the lack of em-
pirical evidence regarding factors used for filtering and pri-
oritizing code smells, i.e., there is no clear indication about
what factors should be considered in each approach. One ex-
planation for this situation is that empirical studies of code
smells have focused mainly on the negative effects of code
smells instead of how developers handle them. For these
reasons, it is essential to identify the factors that should be
considered, e.g., by gathering practitioners’ opinions.

To start with, we performed a study on professional de-
velopers to determine the factors that they consider to han-
dle code smells, especially during the prefactoring phase.
In this phase, developers refactor the source code before
implementing their code [19]. As existing techniques can
be classified into filtration and prioritization techniques, we
consider both.

We conducted the study with ten professional develop-
ers by asking them to select and prioritize code smells of an
open source project under the condition that they complete
a list of five tasks. The reasons they used for selecting and
prioritizing code smells were then collected and analyzed.
In total, we obtained 69 responses for code smell filtration
and 50 responses for code smell prioritization.

The main contribution of this study is that we deter-
mined the factors considered by developers when filtering
and prioritizing code smells for analysis in the prefactoring
phase. This study may help researchers and tool develop-
ers focus on the most appropriate factors concerning code
smells during prioritization and filtration which can improve
the practicability and usability of code smell related tools.
To the best of our knowledge, this is the first study to em-
pirically investigate the factors considered by professional
developers when filtering and prioritizing code smells.

The remainder of this paper is organized as follows.
First, we summarize related studies regarding empirical
studies of code smells and techniques of code smell prior-
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itization and filtration in Sect. 2. In Sect. 3, we explain the
design and details of our study. We present the analysis of
the results in Sect. 4. Threats to validity are discussed in
Sect. 5. Then, we presented our future work in Sect. 6. Fi-
nally, we give our conclusions and suggest further studies in
Sect. 7.

2. Related Work

2.1 Empirical Studies on Code Smells

Code smells are a very active topic for academic and indus-
trial researchers throughout the world, and thus many em-
pirical studies have been conducted to obtain insights into
the issues that the community should explore. We outline
empirical studies regarding code smells in this subsection.

Most previous studies have considered the negative ef-
fects of code smells. For example, Khomh et al. [20] found
that classes with code smells are more likely to change and
become faulty. Abbes et al. [21] investigated the effects of
code smells on program comprehension and found that a
combination of Blob and Spaghetti Code significantly de-
creased the performance of developers. Their results agreed
with those obtained by Yamashita and Moonen [22], who
found that inter-smell relationships were related to mainte-
nance problems. In addition, Yamashita and Moonen [23]
explained that code smells can be used to partly reflect main-
tainability aspects of software. Sjøberg et al. [24], however,
found that 12 of the code smells in their experiment did not
significantly increase maintenance effort. Nevertheless, Soh
et al. [25] revisited the same dataset to conduct a deeper in-
vestigation and found that different code smells, in fact, im-
pact the effort of different maintenance activities. For in-
stance, searching effort is affected by Feature Envy while
Editing effort is affected by Data Clumps code smells.

In addition to studies into the effects of code smells,
previous studies over the past decade have investigated how
developers deal with code smells. Yamashita and Moo-
nen [18] reported a survey of 85 professional developers
concerning code smells. Most of the subjects in their study
stated the need for improved tools to detect code smells, es-
pecially tools with context-sensitive features. Palomba et
al. [26] studied how developers perceive code smells and
found that they perceived code smells differently as prob-
lems according to the types of code smells. Arcoverde et
al. [27] performed an exploratory survey to understand why
code smells remain in source code and found that one of
the reasons was concern about breaking client code. Peters
and Zaidman [28] investigated the lifespan of code smells by
mining a software repository to determine the perspectives
of developers regarding code smells. They found that devel-
opers were aware of code smells, but they were unlikely to
solve them.

Previous empirical studies have mainly focused on the
negative effects of code smells and how developers perceive
them, but there is no empirical study that considers how de-
velopers select and prioritize code smells. This gap causes

some difficulty in the study of the techniques regarding code
smell filtration and prioritization due to a lack of a clear di-
rection for the research community to focus on. Thus, the
aim of this study was to address this shortcoming and iden-
tify the issues that the research community should consider
by identifying the factors that are used by professional de-
velopers.

2.2 Code Smell Prioritization and Filtration

As the large number of code smells detected by detection
tools is one of the crucial challenges, many studies have
been conducted to prioritize and filter the code smell de-
tection results. This subsection summarizes recent studies
on code smell prioritization and filtration.

Severity, describing how strong a code smell is, is one
of the most popular factors used for prioritizing code smells.
For instance, Marinescu defined severity as “Severities are
computed by measuring how many times the value of a
chosen metric exceeds a given threshold” [13]. Fontana et
al. [11] also proposed the Intensity Index by calculating the
distribution of software metrics. They represented the index
as a numerical value between 1–10 and defined five intensity
levels corresponding to each range: Very Low, Low, Mean,
High, and Very High. This metric can be used to determine
critical smells of the system.

Another approach that has been proposed to prioritize
code smells is to use the context of developers. We previ-
ously defined the Context Relevance Index by applying an
impact analysis technique to a list of issues in an issue track-
ing system and prioritized code smells that were most likely
to be related to the context of developers [14], [29].

Furthermore, many approaches have been proposed by
using not only one, but multiple factors for code smell prior-
itization. Arcoverde et al. [15] presented an approach using
four heuristics: change density, error density, anomaly den-
sity, and architecture role, to prioritize code smells. Vidal
et al. [16], instead, used three criteria: historical informa-
tion of component modification, the relevance of the type
of code smell from the developer’s perspective, and modifi-
ability scenarios of the system, to perform semi-automated
prioritization of code smells. In our previous work [17], we
also proposed a prioritization technique using the combina-
tion of code smell severity and the Context Relevance Index.

In addition to code smell prioritization, many studies
have been conducted to filter code smell detection results
to increase the accuracy of existing tools. Fontana et al. [12]
considered the application domain of the system to calculate
strong and weak filters. They used a strong filter to remove
false positive code smells from detection results and a weak
filter to identify code smell instances that are not likely to
be problematic. In contrast, Ratiu et al. [30] used historical
information to measure the stability of each code smell and
filter out the instances that might not be harmful the system.

Although many approaches have been proposed, they
use widely varying factors to prioritize and filter code
smells. This may provide us with a hint that there is a



SAE-LIM et al.: AN INVESTIGATIVE STUDY ON HOW DEVELOPERS FILTER AND PRIORITIZE CODE SMELLS
1735

lack of direction with respect to approach. In other words,
researchers and tool developers do not actually realize the
factors that should be considered in code smell filtration and
prioritization. An underlying reason might be a lack of stud-
ies focusing on factors used by practitioners. However, in
order to improve the usability and practicality of research
tools in our field, the factors used by practitioners need to
be considered when proposing new techniques. Therefore,
the empirical evidence from this study should be able to pro-
vide an opportunity to support the advancement of such ap-
proaches by guiding the community to re-focus on the di-
rection that practitioners need.

3. Study Design

As discussed earlier, the main purpose of this study is to
identify the factors that practitioners use in the code smell
filtration and prioritization process. The result of this study
would allow researchers and tool developers improve code
smell-related techniques such as filtration and prioritization
by considering the use of the identified factors in the pro-
posed techniques. As a result, the practicability and usabil-
ity of research tools can be improved.

Many methods have been proposed based on the use of
different factors to prioritize and filter code smells. Studies
concluded that the main reason for refactoring by develop-
ers is to facilitate task implementation rather than removing
the code smell itself [31], [32]. Therefore, in order to ob-
tain empirical evidence of the factors used for filtering and
prioritizing code smells, we conducted a study in a situation
where many factors could be observed, including the factors
related to the developer’s tasks. Thus, we extended our pre-
vious controlled experiment [17] on the code smells filtered
by developers before working on specific tasks. While our
previous work focused only on the code smell filtration pro-
cess, this work also analyzed the code smell prioritization
process used by developers. In addition, we collected the
reasons for their decisions and included the results of their
analyses in this study. The details of our study are explained
in the following.

3.1 Research Questions

To obtain empirical evidence of how developers filter and
prioritize code smells, we focused on the following two re-
search questions.

• RQ1: What are the factors used by developers in the
code smell filtration process?
• RQ2: What are the factors used by developers in the

code smell prioritization process?

In the first question, the filtration process is focused on code
smells that developers need to address in a timely manner.
The results could allow the research community to focus on
factors used in practical code smell filtration process to re-
duce the number of false positives (code smells that are not
harmful from the perspective of developers). The second

question focuses on the prioritization process which defines
the order in which code smells should be addressed based on
the results of the code smell filtration process, which could
facilitate more practical approaches to code smell prioritiza-
tion by focusing on the key problems.

In order to answer both research questions, we aim to
quantify the following three aspects.

1. Factors used by developers: As the main purpose of
this study is to understand the factors that developers
use to handle code smells, considering the number of
occurrences of each factor would allow us to see the
ranking and distribution of the factors used by the de-
velopers.

2. Combination of multiple factors used by develop-
ers: As discussed in Sect. 2, previously proposed tech-
niques used not only one, but multiple factors to priori-
tize code smells. Therefore, considering the number of
factors that are considered together would enable us to
identify the practitioners’ need and verify whether the
research community’s direction is aligned with it.

3. Effect of developers’ experience: In the empirical
study regarding software development, the experience
of developers plays a particularly important role, e.g.,
developers with more experience tend to make a de-
cision differently than developers with less experience.
Thus, analyzing the result by classifying the experience
of the subjects would enable us to understand if there
are any differences in the way more experienced devel-
opers handle code smells when compared to less ex-
perienced developers, i.e., there might be some factors
that are considered by more experienced developers but
not by less experienced developers and vice versa.

3.2 Data Collection

The data in this study were obtained from an extension of
our previous study [17]. Our previous study dealt with eval-
uating a code smell prioritization technique to determine
whether it agreed with the process followed by professional
developers. The previous study employed the source code
for the JabRef project, a list of five issues, gold set meth-
ods (methods modified to address each issue), and 22 code
smells belonging to the Blob Class, Data Class, God Class,
and Schizophrenic Class as detected by inFusion ver. 1.9.0.
The subjects comprised ten professional developers with
working experience ranging from 2–13 years. Each sub-
ject was provided with a list of five issues, including a sum-
mary and description, as typically shown on the issue track-
ing system for the task to be completed. In addition to the
content for each issue, the subjects were provided with the
solution for each issue in terms of the diff files in order to re-
duce the workload for the subjects. The subjects were then
asked to consider all the issues and the related changes. Sub-
sequently, a list of code smells, including the class name,
package name, type of code smell, and a detailed descrip-
tion explaining why inFusion considered each problem to
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be a code smell were provided to the subjects. The source
code for JabRef, including modules with code smells, was
also provided. Finally, the subjects were requested to filter
code smells that they considered should be refactored after
considering all the information.

Our previous work [17] focused only on the modules
that developers considered should be refactored, whereas
the main purpose of this study was to determine why they
made these decisions. In addition, our previous work fo-
cused only on the code smell filtration process, whereas
this work also investigated the code smell prioritization pro-
cess. Therefore, we added the following experimental tasks
for our subjects and performed further investigations by: 1)
gathering more concrete evidence of why the subjects fil-
tered or did not filter a specific code smell; and 2) asking
the subjects to prioritize the code smells that they filtered
using a ranking scale (i.e., 1, 2, 3, . . . ) as well as their rea-
sons. The responses obtained from the subjects allowed us
to analyze the factors that affected their filtration and priori-
tization of code smells.

3.3 Data Analysis

After obtaining the results from the participants, we used a
coding technique from grounded theory [33] to analyze the
results because it is suitable for studying human aspects of
software engineering [34]. In addition, this technique has
been used widely in software engineering research, includ-
ing studies of code smells [18]. The initial codes were gen-
erated first for the analysis. The codes were not fixed or
limited, so they could be modified, added, or deleted if nec-
essary. Two of the authors then acted as investigators and
completed the process by reading the responses of the sub-
jects and assigning appropriate codes to each response. The
investigators discussed the cases in the event of a disagree-
ment of the results of the coding process. The codes used in
this study were extracted by analyzing the responses of the

Table 2 Final codes

Group Code Description

Smell Smell severity The subject states whether the code smell is severe or not severe.
Smell coupling The selected smell is related to another smell and should be solved together.
Co-located smells Multiple code smells appear in the same module and should be solved at the same time.
Smell false positive The subject does not consider that the result obtained by the code smell detector is a code smell.

Task Task relevance The smell either is related or not related to the subject’s task, i.e., it appears in the module that
the subject needs to modify to solve the task.

Task importance The related task is or is not important.
Task implementation cost The cost incurred for implementing a specific task is high or low.
Task implementation risk The risk of implementing a specific task is high or low.

Quality Testability The module is difficult to test, or the subject wants to improve the testability.
Readability The module is difficult to read, or the subject wants to improve the readability.
Maintainability The module is difficult to maintain, or the subject wants to improve the maintainability.
Understandability The module is difficult to understand, or the subject wants to improve the understandability.

Module Module importance The module plays an important role in the system, e.g., it is a main class that control business
logic of the system.

Module dependency The module is dependent on another module and should be refactored in a specific order.

Refactoring Refactoring cost The cost incurred by performing refactoring operations to remove a code smell is high or low.

subjects. So, some of them might be the same terms as the
ones used in the literature while some of them might be dif-
ferent. Some examples of responses and their correspond-
ing codes are given in Table 1. For instance, the response
“It involves many issues” was assigned with the code Task
relevance, and the response “This file has to be changed ac-
cording to the issue list in this release. The class has too
many functionalities and it is also hard to navigate.” was
assigned with the codes Task relevance and Smell severity.
Moreover, codes such as Smell false positive were also as-
signed to the responses representing the reasons that the sub-
ject did not filter a specific code smell. At the end of the pro-
cess, the investigators combined closely related codes and
finally obtained 15 codes. The final 15 codes can be cat-
egorized into five groups based on the lexical or semantic
characteristics of each code, e.g., the codes containing the
word smell were categorized into the group titled Smell and
the codes containing the word task were categorized into
group titled Task. However, the codes Testability, Read-
ability, Maintainability and Understandability do not have
a word in common but all of them are aspects of software
quality. Therefore, they were categorized into a group titled
Quality. The complete list and the explanation of each code
can be found in Table 2.

Table 1 Examples of responses and corresponding codes

Response Codes

It involves many issues. Task relevance

This file has to be changed according to the is-
sue list in this release. The class has too many
functionalities and it is also hard to navigate.

Task relevance,
Smell severity

[The related task is] not difficult to fix. Task implementa-
tion cost

Util Class is a centric class. This class was in-
voked by many classes, so this class should be
fixed first.

Module importance
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After obtaining the final codes, we have conducted
follow-up interviews with three of the subjects to validate
them. We provided the subjects’ original responses, the
codes and descriptions that we assigned in each response.
Then, we asked them to confirm whether our codes and de-
scriptions were aligned with their intention. All subjects in
our follow-up studies confirmed and agreed with all codes
that we assigned to their responses. In addition, because the
factors identified might be specific to only the project used
in this study, we have also asked the subjects whether the
codes identified in this study were useful for filtering and
prioritizing code smells in general. All of the subjects con-
curred.

To answer the first aspect (factors used by developers)
and second aspect (combination of multiple factors used by
developers) of each research question, we counted the num-
ber of codes and the number of each pair of codes that ap-
peared together more than once respectively. As discussed
earlier, one response may contain multiple codes as the sub-
jects may have used multiple reasons to select or prioritize
code smells. We then used the number of responses contain-
ing a specific code to answer each research question. As for
the third aspect (effect of developers’ experience), we clas-
sified the subjects with less than five years’ experience as
junior developers and the subjects with more than or equal
to five years’ experience as senior developers. As a con-
sequence, each group comprised of five developers equally.
We did not use the position that the subjects specified at the
beginning of the experiment because it might be difficult to
compare among different companies. We then analyzed the
number of codes mentioned by each group to see the differ-
ences.

4. Analysis of Results

4.1 RQ1: What are the Factors Used by Developers in the
Code Smell Filtration Process?

4.1.1 Factors Used by Developers

Table 3 shows the factors used by developers when filtering
code smells according to our analysis. Column #All in the
table represents the number of responses from all subjects
of each code. For example, there are 33 responses from the
subjects containing content identified as Task relevance and
11 responses from the subjects containing content identified
as Smell severity in the first and second row respectively.
Each response represents the input from the subject when
selecting and prioritizing a specific code smell. Clearly, Task
relevance was the most common factor used in the filtra-
tion process, where developers tended to filter code smells
related to their tasks. Some of the responses made by the
subjects were very straightforward because they only con-
sidered the relevance to their tasks (e.g., “It is related to the
issue #4”), whereas some of the responses were also con-
cerned with factors in addition to Task relevance (e.g., the
response “It is related to an issue that we will address soon,

Table 3 Factors used by developers in the code smell filtration process

and it would be good if we can separate the logic into an-
other class to make it testable and more readable” is con-
cerned with the Task relevance, Testability, and Readabil-
ity). These results support previous studies showing that de-
velopers tend to refactor source code mainly to support the
implementation of their tasks [31], [32].

The second most common factor was Smell severity.
We did not provide the subjects with the severity values ob-
tained from the code smell detector used in this experiment
in order to prevent cognitive bias, i.e., the subjects might
have filtered code smells with high severity values without
actually analyzing them. Instead, we provided the subjects
with the source code related to each code smell for the anal-
ysis. When we analyzed the responses of the subjects, we
assigned the Smell severity code to responses that contained
some specific adverbs related to a degree such as too or
very, e.g., “Functions have too many dependencies for ex-
ample screens, menus, etc.” This indicated that the devel-
opers tended to consider the Smell severity when they were
filtering code smells.

In addition to the two factors mentioned above, the
subjects also considered other factors. For instance, one
subject stated the reason why they did not choose a par-
ticular smell as: “This should be selected but we have just
added a parameter in this release. The major change is in
FieldContentSelector.java.” This indicates that the devel-
oper also considered the Task implementation cost. Another
subject indicated the reason why they filtered a code smell
as “Two code smells in one file,” which demonstrates that
factors such as Co-located smells were also considered by
the subjects.

In conclusion, Task relevance and Smell severity
were the most common factors used by developers in the
code smell filtration process.

4.1.2 Combination of Multiple Factors Used by Develop-
ers

As mentioned earlier, previous studies often used multiple
factors to detect and filter code smells, so we conducted fur-
ther analysis on the factors considered together when devel-
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Table 4 Combination of multiple factors used by developers in the code
smell filtration process

opers filtered code smells, thereby obtaining insights into
the factors that should be used together when detecting or
filtering code smells. Thus, for each response given by the
subjects, we counted each pair of codes that appeared to-
gether more than one time.

The results in Table 4 represent the pairs of factors that
the subjects considered together when filtering a code smell,
excluding the ones that were assigned to only one response.
It is apparent that the Task relevance and Smell severity were
the most common factors. For example, one of the subjects
stated the reason why they filtered a code smell as: “This file
has to be changed according to the issue list in this release.
The functions are too long,” thereby mentioning two fac-
tors. The second item in Table 4 comprises the combination
of Task relevance and Testability, where the results show
that Task relevance was the most common factor considered
by developers but it was also often considered together with
another factor, i.e., Testability in this case (e.g., “In this re-
lease, we have to add specific behavior to fix a bug in issue
#4, and thus we have to refactor the code so that we can
write the unit test more easily.”).

To sum up, Task relevance and Smell severity were
the most common factors that were considered together
by developers in the code smell filtration process.

4.1.3 Effect of Developers’ Experience

As discussed earlier, since the experience of developers may
affect the way they filter code smells, we also analyzed the
codes classified by the years of experience of the subjects.
The column #Junior and #Senior of Table 3 represents the
number of responses from junior and senior subjects of each
code respectively. The result from our analysis showed that
Task relevance and Smell severity were still the most popular
factors even though we considered each group individually.
Although there were factors that senior developers consid-
ered but did not appear in junior developers’ responses (e.g.,
Smell coupling) and vice versa (e.g., Testability), we found
that such differences were minor. We concluded that there
is no significant difference between how junior and senior
developers filter code smells.

To conclude, the experience of developers was un-
likely to affect the way they filter code smells.

Table 5 Factors used by developers in the code smell prioritization pro-
cess

4.2 RQ2: What are the Factors Used by Developers in the
Code Smell Prioritization Process?

4.2.1 Factors Used by Developers

Table 5 shows the factors used by developers in the code
smell prioritization process. The column #All in the table
represents the number of responses from all subjects of each
code. In contrast to the factors used for code smell filtration,
Module importance was the most common factor considered
in the prioritization process. For instance, one of the sub-
jects stated that they ranked a code smell with the highest
priority because: “Util Class is a centric class. This class
is invoked by many classes. Thus, this class should be fixed
first.” Another subject stated that they ranked a code smell
with the second highest priority because: “It is important
but less important than the main UI class.” Thus, the devel-
opers tended to first prioritize modules with important roles
in the system and then other modules with lower priority.

However, the second most common factor was still
Task relevance. We found that the numbers of tasks related
to code smells were often included in the responses. For
example, one subject mentioned that they assigned a code
smell as the first item to fix because: “It involves many is-
sues,” and the reason for the second smell was: “It only in-
volves issue #1.” Another subject gave a similar reason why
a code smell was ranked first: “This issue list has three is-
sues related to this single file. This should be considered the
highest priority to be fixed.”

Furthermore, other factors such as the Refactoring cost
(e.g., “Low effort [for refactoring] is required.”) and Mod-
ule dependency (e.g., “This file should be addressed after the
Util class to consider the lower risk of the code change.”)
were also considered by the subjects.

In summary, Module importance was the most com-
mon factor used in code smell prioritization process and
the second was Task relevance.
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Table 6 Combination of multiple factors used by developers in the code
smell prioritization process

4.2.2 Combination of Multiple Factors Used by Develop-
ers

As discussed earlier, many prioritization techniques have
been proposed based on combinations of multiple factors
despite the lack of empirical evidence in support of this ap-
proach. To address this shortcoming, we also analyzed the
combination of multiple factors used when developers pri-
oritized code smells.

We asked the subjects to state their reason for priori-
tizing each code smell, but we combined the codes for ev-
ery response given by a subject in the investigation, which
differed from our analysis of the filtration process. This is
because code smell prioritization is a comparative process,
i.e., the subjects had to compare different smells and give
higher importance to one smell, but less importance to oth-
ers. Thus, we could determine the pairs of factors used by
developers to prioritize code smells.

The results, excluding the ones that were assigned by
only one subject, are presented in Table 6. According to
these results, Module importance and Task relevance were
the most common combination of multiple factors used by
developers when prioritizing code smells (e.g., “It should be
fixed first because it is related to the issue and it is a share
class.”). In addition, the second pair that developers used
most often was Module importance and Testability (e.g., “It
would be better if the main class of the UI project is readable
and testable. In addition, it would reduce the time required
for testing.”).

To conclude, Module importance and Task relevance
were the most common factors that were considered to-
gether in the code smell prioritization process.

4.2.3 Effect of Developers’ Experience

Similarly to RQ1, we analyzed the results by classifying ac-
cording to junior and senior developers. Columns #Junior
and #Senior of Table 5 show the number of responses from
junior and senior subjects of each code, respectively. The re-
sults were similar to those in RQ1 in the sense that there was
no significant difference between both groups. The most

common factors for both groups were still Module impor-
tance and Task relevance. While there were some cases that
junior and senior developers used different factors for pri-
oritizing code smells, we found such differences insignifi-
cant and concluded that the factors used for prioritizing code
smells are unlikely to be affected by developers’ experience.

In conclusion, developers’ experience did not tend
to affect how they prioritize code smells.

4.3 Implications

Table 7 shows the results of our survey regarding the factors
identified in this study that have been considered in the liter-
ature. The scope of our survey was limited to the code smell
prioritization and filtration approach. Code smell prioritiza-
tion uses the result of the code smell detection approach as
one of the inputs and generates a list where code smells are
sorted by specific criteria while code smell filtration reduces
the number of code smells based on specific criteria. We put
a checkmark in the cell where the factor in each row was
used in the approach in each column. It is noteworthy that
we compared the definition of the factor of each work with
the one in this study. Therefore, the term used in the original
paper may not be exactly the same as the one defined in this
manuscript. Furthermore, we list the factors that were used
by work in the literature but were not identified in this study
(e.g., Change density, Error density) in group Others.

The results showed that some of the factors identified
in this study (Smell severity, Co-located smells, Smell false
positive, Task relevance, and Module importance) were used
in code smell prioritization and filtration approaches in the
literature. This suggests that a part of the literature has used
the factors that align with practitioners’ needs. Therefore,
we encourage the research community to continue focusing
on the factors for future development, thus improving the
practical utility of these research tools.

However, the results also show that existing techniques
have paid most attention to factors in group Smell. In ad-
dition, out of the 15 factors identified in this study, ten of
them have not been considered in the literature. This indi-
cates that there are still many factors that need to be consid-
ered by the research community. For instance, even though
factors in group Task have been considered in recent studies,
the only factor that has been considered is Task relevance. In
contrast, the factor Task implementation cost has never been
considered although it was the third most common factor
in the code smell filtration process identified in this study.
In addition, factors in group Quality and Refactoring have
never been taken into account even though they are closely
related to code smells. We strongly recommend considering
these factors when developing new techniques such as code
smell filtration and prioritization.

Lastly, although there are some techniques that have
proposed the combination of multiple factors when priori-
tizing code smells, there is still room for improvement in
this aspect. For example, the combination of Module impor-
tance and Task relevance has never been proposed in spite
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Table 7 Factors identified in this study that have been considered in the literature
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Smell Smell severity � � �
Smell coupling
Co-located smells �
Smell false positive �

Task Task relevance � � �
Task importance
Task implementation cost
Task implementation risk

Quality Testability
Readability
Mantainability
Understandability

Module Module importance �
Module dependency

Refactoring Refactoring cost

Others1 Change density � � �
Error density �
Smell type �
Smell persistency �

1 Other factors that were not identified in this study.

of being the most common combination of multiple factors
used in the code smell prioritization process. Therefore, we
encourage the development of new techniques that consider
the combinations observed from this study.

5. Threats to Validity

The internal validity of this study is dependent on the data
set that we used. First, the data set was designed for evaluat-
ing a code smell prioritization technique for prefactoring, so
it may have missed some factors considered by developers
in different situations. For example, our results in Table 7
shows that some existing techniques used factors such as
Change density or Error density to prioritize or filter code
smells. However, because this study did not include histor-
ical information, e.g., version control system or issue track-
ing system, we may have failed to identify such factors that
rely on historical information. Second, the subjects were
not the main developers of the project investigated in this
study. Therefore, the results may differ if experiments are
conducted on a source code that the developers are familiar
with; for instance, they may consider some code smells as
false positives or may filter code smells that are indirectly
impacted by changes. However, conducting this type of
study with the project that the subjects are working on is
not practical due to the fact that we need to access to their
source code and issue tracking system. Additionally, con-
ducting a study regarding code smells with industrial devel-

opers using open source software source code is not uncom-
mon (e.g., [26]). Inviting core developers of open source
projects could become a part of our future work, but a low
response rate is expected [26].

The construct validity might depend on the codes that
we assigned to each response. The process was conducted
by two investigators, but there may have been some bias dur-
ing the process. Furthermore, the responses obtained from
the subjects might not represent the actual reasons why they
filtered or prioritized code smells. However, all subjects in
our follow-up studies confirmed and agreed with all codes
that we assigned to their responses. While only 10 codes
were in this follow-up study, which does not cover all the
codes identified in this study, we believe this threat should
be minimized.

Another construct validity might depend on the validity
of the answer that the subjects made, i.e., the subjects might
have randomly selected or prioritized code smells without
consideration. However, as our study design forced the sub-
jects to state the reasons for the performed action, i.e., the
reasons for selecting or prioritizing particular code smells,
we believe this threat is mitigated. In addition, because we
mainly focused on the reasons behind the selected or priori-
tize code smells in this study, the validity should depend on
the reasons that the subjects state and not the actions that
they performed, i.e., if the subjects did not state the reasons,
the result will be invalid. However, such cases did not occur
during our study.
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Finally, similar to other empirical studies, the external
validity of this study is dependent on the scale of the exper-
iment. The subjects differed in terms of their background
and the number of years of experience. However, the num-
ber of developers who participated in this study was only
ten, and they might not have been representative subjects. In
addition, this study only investigated one project with four
types of code smells. Therefore, the factors identified in
this study might be specific to only this project. However,
in our follow-up studies, all of the subjects agreed that the
codes identified in this study were useful for filtering and
prioritizing code smells in general. This may indicate that
the identified codes are not specific to the project used in this
study. Nevertheless, a larger scale study might be beneficial.

6. Future Work

Our future work includes two parts. As discussed earlier,
because we may have missed some details in this study, the
first task is to conduct follow-up interviews with some of the
subjects to obtain a more specific opinion on how they filter
and prioritize smells. The second part of our future work is
to propose code smell filtration and prioritization techniques
based on the factors identified in this study that have not
been considered by the research community as discussed in
Sect. 4.3.

7. Conclusion

In this study, we conducted an experiment to determine how
professional developers filtered and prioritized code smells.
Our findings agree with previous studies where developers
gave higher priority to code smells related to their specific
context, i.e., the tasks upon which they were working. First,
Task relevance was the most common factor considered dur-
ing code smell filtration, followed by Smell severity, and
both were also often considered together during the filtration
process. Second, Module importance was the most common
factor in the code smell prioritization process, followed by
Task relevance. Moreover, other factors such as the Task
implementation cost and Co-located smells were considered
in both processes. We recommend that researchers and tool
developers focus on the factors used for code smell filtration
and prioritization identified in this study.
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