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Abstract—A decaying module refers to a module whose quality
is getting worse and is likely to become smelly in the future.
The concept has been proposed to mitigate the problem that
developers cannot track the progression of code smells and
prevent them from occurring. To support developers in proactive
refactoring process to prevent code smells, a prediction approach
has been proposed to detect modules that are likely to become
decaying modules in the next milestone. Our prior study has
shown that modules that developers will modify as an estimation
of developers’ context can be used to improve the performance
of the prediction model significantly. Nevertheless, it requires the
developer who has perfect knowledge of locations of changes
to manually specify such information to the system. To this
end, in this study, we explore the use of automated impact
analysis techniques to estimate the developers’ context. Such
techniques will enable developers to improve the performance
of the decaying module prediction model without the need of
perfect knowledge or manual input to the system. Furthermore,
we conduct a study on the relationship between the accuracy of
an impact analysis technique and its effect on improving decaying
module prediction, as well as the future direction that should be
explored.

I. INTRODUCTION

Code smell is often used to represent an indicator of a design
flaw or a problem in source code [1]. For instance, a class
that has God Class code smell is considered as having too
many functionalities and overly complex. Such problems are
found to be related to software maintenance problems [2]. As a
consequence, many approaches and tools have been proposed
to detect code smells using different kinds of information such
as source code metrics [3], [4] or historical information [5].
Nevertheless, one drawback of most tools is that they focus on
a detect-and-remove strategy, which means that developers can
only solve code smells after their source code become smelly.
In other words, developers can neither track the progression
of code smells or prevent them from occurring. To this end,
we previously proposed the concept of a decaying module,
which is a module whose quality is getting worse and is likely
to become smelly in the future [6]. This technique allows
developers to prevent code smells from occurring.

In order to support developers’ refactoring planning strategy,
we also proposed a machine learning approach to predict
modules that will decay in the future [6]. The baseline uses
source code quality as predictor variables and whether the
given module will decay in the next release as a response
variable. In addition to the baseline model, we also conducted
a preliminary study on using developers’ context as an ad-

ditional predictor variable and found that such information
can significantly improve the performance of the prediction
model. We used a set of modules that developers are going to
modify as a proxy to express developers’ context. However, the
preliminary study was conducted under the assumption that the
developer who uses the system must have perfect knowledge
of the locations of the changes. In addition, the developer has
to specify such information into the system manually.

To bridge this gap, in this study, we explore the use
of an alternative approach that can estimate the context of
developers instead of relying on knowledge of developers. We
leverage automated impact analysis techniques which refer to
techniques that automatically identify a full set of modules
that are likely to be affected by a particular change [7].
Such techniques use the information commonly available in
a software development project, such as change descriptions,
to predict modules that developers are going to modify. We
conduct a study to verify whether the predicted modules can
be used as an estimation of developers’ context, i.e., they can
also be used to improve the prediction model performance of
decaying modules. Such an approach will enable developers
to improve the performance of the prediction model without
the need for perfect knowledge of change locations nor the
need for manual input to the system.

Moreover, while automated impact analysis techniques have
been studied extensively in the literature [8], the approach is
still far from being perfect. Although many attempts have been
made to improve the accuracy of the approach, the relationship
between the accuracy of an impact analysis technique and the
performance of decaying module prediction remains unclear.
Therefore, in this paper, we study the relationship by artifi-
cially modifying the accuracy of impact analysis. The result
can be used as empirical evidence to show how we can further
improve the impact analysis technique in the future.

The main contributions of this study are twofold. First, we
show that developers’ context estimated by impact analysis
techniques can also improve decaying module prediction per-
formance. Second, we present an investigation on how we
can improve the impact analysis technique to enhance the
performance of decaying module prediction model further.

The remainder of this paper is organized as follows. The
next section summarizes the idea of a decaying module
and its prediction. Section III presents our empirical studies.
Section IV presents threats to validity of this study. Section V
concludes this paper.
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Fig. 1. Decaying modules prediction approach.

II. DECAYING MODULE AND ITS PREDICTION

A. Decaying Module

The concept of a decaying module was proposed to mitigate
the gap of most code smell detectors that warn developers
about the quality problems only after they occur in the
system [6], which did not allow developers to prevent the
problems before. A decaying module was defined as a module
that is getting closer to becoming smelly during a specified
period. This would allow developers to handle modules before
they become smelly.

In order to detect decaying modules, the Module Decay
Index (MDI) was also proposed as an indicator of how close
a module is to becoming code smell [6]. The MDI can be
used in a situation of metric-based code smell detection that
use multiple conditions to detect a code smell. Each condition
is determined by whether a particular metric exceeds their
corresponding thresholds. In this case, we can calculate MDI
by averaging the ratio of a metric to its threshold of each
condition. The MDI is range from 0 to 1. A higher MDI means
that the module is closer to become a code smell. A module is
considered a decaying module if its MDI has been increased
from the previous release.

B. Decaying Modules Prediction

The idea of this approach is to use the information of the
current release to predict modules that are going to decay in
the next release. Figure 1 shows an overview of the baseline
approach of our prior work and the modification we make
in this study. The part outside the dashed box represents an
overview of the baseline approach. The data is divided into
training data and test data. Assuming that we want to predict
if a given module will decay in release n+1, the training data
will be the source code of a set of releases M = {1, 2, . . . , n−1}
and the test data will be the source code of release n. First, for
each release m ∈ M , we calculate three types of code quality
of the source codes in training data to construct the classifier
model. The three types of code quality are current code quality,

historical code quality, and recent code quality trend. Then,
we apply the detector to the source code of release m + 1
to identify decaying modules, i.e., modules that are getting
closer to become smelly. Based on this information from all
releases in M , the predictor variables (code quality) and the
response variable (whether the module gets decayed or not)
are used to construct the classifier model. Then, we apply the
same static analyzer to calculate the code quality of source
code in release n and input to the model. Finally, the result of
the model indicate modules that are likely to decay in release
n + 1.

Additionally, the part that we change from the setting of
our prior study is shown in the dashed box of Fig. 1. In
our prior work, we showed that adding developers’ context
information, which is expressed as a set of modules that
developers are going to modify, as an additional predictor
variable can improve the performance of the prediction model
significantly. However, our prior study was conducted under
the condition that the developer has perfect knowledge of
modules that will be modified. Furthermore, the developer
has to specify such information into the system manually.
To alleviate these conditions, in this study, we explore the
use of an automated approach that does not require perfect
knowledge of developers. Specifically, we focus on the use of
information retrieval (IR)-based impact analysis technique to
estimate developers’ context. The underlying reason is that
it requires a minimum amount of information to perform:
only change descriptions and source code. Such information
is commonly available in a software development project. The
IR-based impact analysis takes the change descriptions that
developers are going to implement and the source code to
predict the locations that are going to be modified. The details
will be explained in the next section.

III. EMPIRICAL STUDY

A. Research Questions

In this study, we aim at answering the following research
questions:



TABLE I
OPTIMIZED PARAMETERS OF IR-BASED IMPACT ANALYSIS TECHNIQUES

Project Technique Cut point

Accumulo BM25 20
Ambari BM25 40
Derby VSM 30
Hive BM25 10

RQ1: Can developers’ context estimated by an IR-based impact
analysis technique improve prediction performance?

RQ2: How can we further improve the performance of predic-
tion model?

The details of each research question will be discussed later.

B. Experimental Setup

1) Data Collection: We use the same dataset as the baseline
approach, which comprises of four open source projects:
Accumulo, Ambari, Derby, and Hive. First, we obtain a list
of issues of each project from their issue tracking systems1.
Then, we extract summary, description, and the release that the
issue was implemented. For each issue, we applied an impact
analysis to generate locations that are likely to be changed to
complete the issue. In this study, we focus on IR-based impact
analysis because it requires minimum information to perform,
i.e., it takes only the change descriptions and source code as
inputs of the technique. The IR-based impact analysis works
by calculating the textual similarity between an issue and
source code. We consider the similarity score determined by
the impact analysis technique as a probability that a particular
module will be modified. Then, we calculate the Context
Relevance Index (CRI), which was proposed in our prior
work [9]. The CRI of a module can be calculated by the
summation of the similarity score in all issues that contains the
module. The CRI represents the relevance of each module to
the context of developers. A higher value of CRI means higher
relevance to the context, i.e., more likely to be modified. We
then create a new variable representing the CRI value. In order
to calculate the CRI value, we need to specify two parameters:
the technique used by IR-based impact analysis and the cut
point when calculating CRI. The technique used by IR-based
impact analysis determines how the data is represented and
how the similarity is calculated while the cut point determines
the number of modules used when calculating CRI. In this
study, we adopt four fundamental IR-based impact analysis
techniques which are often studied in impact analysis research:
Vector Space Model (VSM), Latent Semantic Indexing (LSI),
Latent Dirichlet allocation (LDA), and Okapi BM25 (BM25).
For the cut point, we use 10, 20, 30, and 40, which are usually
used in the previous research [7], [9]. For each project, we
try all combination of each impact analysis technique and cut
point, e.g., VSM with 10 cut point or VSM with 20 cut point.
We then finally select the best combination of each project
to use in this study. The underlying reason is that we want

1https://issues.apache.org/jira/secure/Dashboard.jspa
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Fig. 2. AUC values of baseline, IR-based models and the upper bound models.

to simulate the real world setting where parameters of the
technique are optimized for each project before utilizing the
technique. The best combination of each project can be found
in Table I.

C. RQ1: Can developers’ context estimated by an IR-based
impact analysis technique improve prediction performance?

1) Motivation: As discussed earlier, we showed that devel-
opers’ context (i.e., the modules that developers are going to
modify) could be used to improve decaying module prediction
performance. However, with the purpose of obtaining the up-
per bound performance of the model, the study was conducted
based on the assumption of the perfect knowledge of develop-
ers. In addition, the developer has to input such information to
the system manually. To this end, in this study, we propose an
alternative approach that does not rely on perfect knowledge of
developers. By using the results of automated impact analysis
technique to represent developers’ context, we suspect that it
can also improve the performance of the model without the
need of perfect knowledge from developers. However, since
such techniques do not have perfect accuracy, it is sensible that
such improvement is smaller than using the perfect knowledge
of developers.

2) Study Design: We compare the accuracy of the predic-
tion model between the baseline and the model with CRI value.
We conduct the Wilcoxon signed-rank test with the following
null hypothesis to confirm if the results are statistically sig-
nificant.

H0: Developers’ context estimated using IR-based impact
analysis technique does not improve the performance of
prediction model.

Therefore, an alternative hypothesis can be defined as:

Ha: Developers’ context estimated using IR-based impact
analysis technique improves the performance of predic-
tion model.

In addition, we calculate Cliff’s delta (d) as a measure of the
magnitude of the improvement. The Cliff’s delta is interpreted
based on the threshold by Romano et al. [10]: negligible for
|d | < 0.147, small for |d | < 0.33, medium for |d | < 0.474,
and large for |d | ≥ 0.474.



TABLE II
RESULTS OF WILCOXON SIGNED-RANK TESTS AND

THE CLIFF’S DELTA EFFECT SIZE TESTS

Project p value Cliff’s delta

Accumulo <0.001 0.293 (small)
Ambari 0.237 0.067 (negligible)
Derby 0.007 0.382 (medium)
Hive 0.002 0.218 (small)

3) Results and Discussion: Figure 2 shows the accuracy of
the prediction model between the baseline model, the model
using IR-based impact analysis techniques to estimate devel-
opers’ context and the upper bound models. When comparing
the accuracy between the baseline and IR-based models, we
can observe that the IR-based model tends to have higher
performance than the baseline model. Specifically, the median
of the AUC values have been improved from 0.62 to 0.67 for
Accumulo, from 0.66 to 0.67 for Ambari, from 0.58 to 0.65
for Derby, and from 0.62 to 0.66 for Hive.

Table II shows the results of Wilcoxon sign-rank tests and
Cliff’s delta effect size tests. The cells with p values less
than 0.05 and Cliff’s delta higher than 0.147 (not negligible)
are highlighted in gray. The results of the Wilcoxon signed-
rank test shows that the results are statistically significant
at α = 0.05 except for Ambari project. Therefore, for the
projects other than Ambari, we can reject the null hypothesis
and conclude that developers’ context estimated by IR-based
impact analysis technique can improve the performance of the
prediction model. Furthermore, Cliff’s delta values show that
the result has a small effect for Accumulo and Hive, medium
effect for Derby, and negligible effect for Ambari. So, we can
see that the improvements are not negligible for all projects
except for Ambari.

However, when we compare the improvement of the perfor-
mance of the prediction model between IR-based and upper
bound models, we can see that the improvements of IR-based
models are much lower than the ones of the upper bound
model. The result is as expected because the improvement
of the upper bound model assumes perfect knowledge of
developers, but the impact analysis technique relies on change
descriptions to estimate the context. We can conclude that
the IR-based impact analysis technique has a potential of
representing developers’ context, although using only textual
change descriptions and source code as inputs.

In conclusion, developers’ context estimated by IR-based
impact analysis technique can improve the performance of
the decaying module prediction model.

D. RQ2: How can we further improve the performance of
prediction model?

1) Motivation: As discussed in earlier sections, while the
context estimated by existing IR-based impact analysis tech-
niques can help improve the performance of prediction model,
the improvements are still low comparing to the situation of
perfect knowledge of developers. One reason for such small

improvement may be the low accuracy of the IR-based impact
analysis, i.e., the high number of false positives and the low
number of true positives. If the impact analysis technique
results in many false positives, they will become noises that
may obstruct the prediction model instead of helping them
identify decaying modules. Furthermore, if the number of true
positives is low, the impact analysis techniques can predict
only a part of the correct answers and fail to detect the rest and,
therefore, provide insufficient information to the prediction
model. To this end, many approaches have been proposed
to improve the accuracy of impact analysis techniques such
as combining IR-based approach with extra information [8].
Nevertheless, even the state-of-the-art approach is still far
from being perfect. Although the research community has
been working on improving the accuracy of impact analysis
techniques, it is still unclear whether high accuracy impact
analysis techniques can improve the decaying module predic-
tion model. Thus, to obtain empirical evidence, we artificially
tune the accuracy of impact analysis techniques and observe
the relationship between the accuracy of an impact analysis
technique and decaying module prediction model. We expect
the result to be useful for the future direction of impact
analysis research.

2) Study Design: We conducted an analysis under the
assumption that mitigating the problems of high false positives
and low true positives can improve the performance of the
prediction model. We artificially modified the result of IR-
based impact analysis technique in two steps, which are
inspired by the task input generation approach of a feature
location study [11]: First, we decrease the number of false
positives by randomly removing false positives from the result.
Second, we increase the number of true positives by randomly
adding false negatives to the result. We refer to the ratio that
we decrease the number of false positives as False Positive
Decrement Ratio (FPDR) and to the ratio that we increase
the number of true positives as True Positive Increment Ratio
(TPIR). Both of the ratios are from 0.0 to 1.0 with the step
of 0.1. After performing the modification, we recalculate the
CRI and use it as an exploratory variable of the prediction
model. Finally, we calculate the performance of each model
for comparison.

3) Results and Discussion: Figure 3 represents the heat
map of the AUC of the prediction model. The vertical axis
represents the values of TPIR, while the horizontal axis
represents the values of FPDR. Each cell represents the AUC
value of each setting. The brighter color shows a higher AUC,
while the darker color shows the lower AUC values. In general,
we can observe that AUC values tend to have a higher value in
the top right corner of the heat map (e.g., in Ambari project).
This result suggests that the more we decrease the number of
false positives, and the more we increase the number of true
positives, the higher AUC values become. Moreover, when we
observe the value with low TPIR, we can see that increasing
FPDR does not significantly improve the AUC values. This
may indicate that increasing the number of true positives
should be given higher priority than decreasing the number
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Fig. 3. Comparison of the prediction model performance at different TPIR and FPDR.

of false positives.
Technically, decreasing the number of false positives may be

accomplished by complimenting IR-based approach with other
approaches such as dynamic analysis approach. For example,
we can use execution trace to filter irrelevant modules from
the result of IR-based approach, which may result in a lower
number of false positives [7]. On the other hand, increasing
the number of true positives can be done by combining the
IR-based approach with a technique such as mining software
repositories (MSR). For instance, MSR approach can adopt
association mining rules to detect modules that were often
modified together in the past and use that information to
detect the modules that may not be found by only IR-based
approach [7]. While combining both techniques together have
been shown to improve the accuracy of impact analysis tech-
niques [7], one downside is that it requires extra information
which may or may not be available depending on the projects.

To sum up, whereas improving the accuracy of the
impact analysis techniques by decreasing the number of
false positives and increasing the number of true positives
can improve decaying modules prediction, we should give
higher priority to increasing the number of true positives.

IV. THREATS TO VALIDITY

One significant threat to validity when using change descrip-
tions to estimate developers’ context lies in software reposito-
ries. For example, developers may make some modifications
unrelated to any issue in the issue tracking system. In this
situation, impact analysis techniques will fail to include such
modification in the estimated list. In addition, as we rely on
commit messages to identify the true positives of each issue,
if developers do not put the details of the issue to the commit
messages, our technique will fail to identify the true positives.
We mitigated this threat by filtering the projects that have a
high ratio of commits that include issue ID (higher than 80%)
based on the list by Miura et al. [12]. This can ensure that
most of the changes were related to the issues in the issue
tracking system.

V. CONCLUSION

In this paper, we explored the possibility of improving de-
caying modules prediction performance by using developers’

context estimated by automated impact analysis techniques.
We found that the context estimated by IR-based impact
analysis techniques can improve the performance of the predic-
tion model. We also discussed that the performance could be
further improved by improving the accuracy of impact analysis
technique such as decreasing the number of false positives and
increasing the number of true positives of the results of impact
analysis techniques.
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