
How Do Developers Select and Prioritize
Code Smells? A Preliminary Study

Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki
School of Computing, Tokyo Institute of Technology, Tokyo 152–8552, Japan

Email: {natthawute, hayashi, saeki}@se.cs.titech.ac.jp

Abstract—Code smells are considered to be indicators of design
flaws or problems in source code. Various tools and techniques
have been proposed for detecting code smells. The number of code
smells detected by these tools is generally large, so approaches
have also been developed for prioritizing and filtering code smells.
However, the lack of empirical data regarding how developers
select and prioritize code smells hinders improvements to these
approaches. In this study, we investigated professional developers
to determine the factors they use for selecting and prioritizing
code smells. We found that Task relevance and Smell severity were
most commonly considered during code smell selection, while
Module importance and Task relevance were employed most often
for code smell prioritization. These results may facilitate further
research into code smell detection, prioritization, and filtration
to better focus on the actual needs of developers.

I. INTRODUCTION

Code smells were first defined by Fowler [1] to represent
problems in source code possibly caused by bad design deci-
sions. This definition mostly applies to descriptive languages
so many studies have aimed to interpret these smells in a
formal manner. In particular, several previous work use source
code metrics to detect code smells (e.g., [2]). In addition, many
attempts have been made to detect code smells using other
information such as historical data [3].

However, the number of results from such techniques are
numerous because of the large volumes of source code.
Thus, research has focused on trying to reduce the amount
of code smells by prioritizing or filtering them. Previously
proposed techniques for prioritizing and filtering code smells
have focused on different methods such as the severity-based
technique where more severe code smells are given higher
priority [4], [5], [6], the context-based technique where code
smells are prioritized according to the specific contexts of
developers [7], or by using combinations of multiple factors
to prioritize code smells [8], [9], [10].

However, improving these methods has been hindered by the
lack of empirical evidence regarding factors used for selecting
and prioritizing code smells. There is no clear indication that
which factors should be considered in each approach. One
explanation for this situation is that empirical studies of code
smells have focused mainly on the negative effects of code
smells instead of how developers handle them.

To address this shortcoming, we performed a study on
professional developers to determine the factors that they em-
ploy to handle code smells, especially, during the prefactoring
phase. In this phase, developers refactor the source code before

changing their source code in order to facilitate its implemen-
tation [11]. Since existing techniques can be classified into
filtration and prioritization techniques, we consider them both.

The main contribution of this study is that we determined
the factors considered by developers when selecting and priori-
tizing code smells for analysis in the prefactoring phase. These
factors may help researchers and tool developers to focus on
the most appropriate factors concerning code smells during
prioritization and filtration. To the best of our knowledge,
this is the first study to empirically investigate the factors
considered by professional developers when selecting and
prioritizing code smells.

The remainder of this paper is organized as follows. First,
we summarize related research regarding empirical studies of
code smells in Section II. In Section III, we explain the design
and details of our study. We present the analysis of the results
in Section IV. Threats to validity are discussed in Section V.
Finally, we give our conclusions and suggest further research
in Section VI.

II. RELATED WORK

Code smells are a very active topic for academic and
industrial researchers throughout the world, and thus many
empirical studies have been conducted to obtain insights into
the issues that the community should explore.

Most previous studies have considered the negative effects
of code smells. For example, Khomh et al. [12] found that
classes with code smells are more likely to change and become
faulty. Abbes et al. [13] investigated the effects of code
smells on program comprehension and found that a combi-
nation of Blob and Spaghetti Code significantly decreased the
performance of developers. Their results agreed with those
obtained by Yamashita and Moonen [14], who found that inter-
smell relationships were related to maintenance problems. In
addition, Yamashita and Moonen [15] explained that code
smells can be used to partly reflect maintainability aspects
of software.

In addition to research into the effects of code smells,
previous studies over the past decade have investigated how
developers deal with code smells. Thus, Yamashita and Moo-
nen [16] reported a survey of 85 professional developers
concerning code smells. Most of the subjects in their study
stated the need for improved tools to detect code smells, espe-
cially tools with context-sensitive features. Palomba et al. [17]
studied how developers perceive code smells and found that



they perceived code smells differently as problems according
to the types of code smells. Arcoverde et al. [18] performed an
exploratory survey to understand why code smells remain in
source code and found that concern about breaking client code
was one explanation. Peters and Zaidman [19] investigated
the lifespan of code smells by mining a software repository
to determine the perspectives of developers regarding code
smells. They found that developers were aware of code smells,
but they were unlikely to solve them.

Previous empirical studies have mainly focused on the
negative effects of code smells and how developers perceive
them, but there is no empirical study that has considered how
developers select and prioritize code smells. Thus, the aim of
this study was to address this shortcoming in order to identify
the issues that the research community should consider.

III. STUDY DESIGN

Many methods have been proposed based on the use of
different factors to prioritize and filter code smells. Studies
concluded that the main reason for refactoring by developers is
to facilitate task implementation rather than removing the code
smell itself [20], [21]. Therefore, in order to obtain empirical
evidence of the factors used for filtering and prioritizing code
smells, we conducted a study in a situation where many
factors could be observed, including the factors related to the
developer’s tasks. Thus, we extended our previous controlled
experiment [10] on the code smells selected by developers
before working on specific tasks. The details of our previous
study are explained in the following.

A. Research Questions
To obtain empirical evidence of how developers select

and prioritize code smells, we focused on the following two
research questions.

• RQ1: What are the factors used by developers in the code
smell selection process?

• RQ2: What are the factors used by developers in the code
smell prioritization process?

In the first question, the selection process is focused on code
smells that developers need to address in a timely manner. The
results could allow the research community to focus on factors
used in practical code smell detection or filtration processes
to reduce the number of false positives (code smells that are
not harmful from the perspective of developers). The second
question focuses on the prioritization process which defines
the order in which code smells should be addressed based on
the results of the code smell selection process, which could
facilitate more practical approaches to code smell prioritization
by focusing on the key problems.

B. Data Collection
The data in this study were obtained from an extension

of our previous study [10]. Our previous study dealth with
evaluating a code smell prioritization technique to determine
whether it agreed with the process followed by professional
developers. The previous study employed the source code for

TABLE I
EXAMPLES OF RESPONSES AND THEIR CORRESPONDING CODES

Response Codes
It involves many issues Task relevance
This file has to be changed according to the issue
list in this release. The class has too many func-
tionalities and it is also hard to navigate.

Task relevance,
Smell severity

[The related task is] not difficult to fix. Refactoring cost
Util Class is a centric class. This class was invoked
by many classes, so this class should be fixed first.

Module importance

the JabRef project, a list of five issues, gold set methods
(methods modified to address each issue), and 22 code smells
belonging to the Blob Class, Data Class, God Class, and
Schizophrenic Class as detected by inFusion ver. 1.9.0. The
subjects comprised 10 professional developers with working
experience ranging from 2–13 years. Each subject was pro-
vided with a list of five issues, including a summary and
description, as typically shown on the issue tracking system
for the task to be completed. In addition to the content for each
issue, the subjects were provided with the solution for each
issue in terms of the diff files in order to reduce the workload
for the subjects. The subjects were then asked to consider
all the issues and the related changes. Subsequently, a list of
code smells, including the class name, package name, type of
code smell, and a detailed description explaining why inFusion
considered each problem to be a code smell were provided to
the subjects. The source code for JabRef, including modules
with code smells, was also provided. Finally, the subjects were
requested to select code smells that they considered should be
refactored after considering all the information.

Our previous work [10] focused only on the modules that
developers considered should be refactored, whereas the main
purpose of this study was to determine why they made these
decisions. In addition, our previous work focused only on
the code smell selection process, whereas this work also
investigated the code smell prioritization process. Therefore,
we performed further investigations by: 1) gathering more
concrete evidence of why the subjects selected or did not select
a specific code smell; and 2) asking the subjects to prioritize
the code smells that they selected using a ranking scale (i.e., 1,
2, 3, ...) as well as their reasons. The responses obtained from
the subjects allowed us to analyze the factors that affected
their selection and prioritization of code smells.

C. Data Analysis
After obtaining the results from the participants, we used a

coding technique from grounded theory to analyze the results
because it is suitable for studying human aspects of software
engineering [22]. In addition, this technique has been used
widely in software engineering research, including studies of
code smells [16]. The initial codes were generated first for the
analysis. The codes were not fixed or limited, so they could be
modified, added, or deleted as necessary. Two of the authors
then acted as investigators and completed the process by
reading the responses of the subjects and assigning appropriate
codes to each response. The investigators discussed the cases



in the event of a disagreement. At the end of the process,
we combined closely related codes, and after analyzing the
results, we finally obtained 15 codes. The explanation of each
code is as follows:

1) Co-located smells: Multiple code smells appear in the
same module.

2) Maintainability: The module is difficult to maintain, or
the subjects want to improve the maintainability.

3) Module dependency: Code smells should be solved in a
specific order.

4) Module importance: The module plays an important role
in the system.

5) Readability: The module is difficult to read, or the
subject wants to improve the readability.

6) Refactoring cost: The cost incurred by performing refac-
toring operations to remove a code smell.

7) Smell false positive: The subject does not consider that
the result obtained by the code smell detector is a code
smell.

8) Smell severity: The subject considers that the code smell
is severe or not severe.

9) Smell coupling: One smell is related to another.
10) Task implementation cost: The cost incurred for imple-

menting a specific task is high or low.
11) Task implementation risk: The risk of implementing a

specific task is high or low.
12) Task importance: The related task is or is not important.
13) Task relevance: The smell is related to the subject’s task.
14) Testability: The module is difficult to test, or the subjects

want to improve the testability.
15) Understandability: The module is difficult to understand,

or the subjects want to improve the understandability.
Some examples are given in Table I. For instance, the response
“It involves many issues” was assigned with the code Task
relevance, and the response “This file has to be changed ac-
cording to the issue list in this release. The class has too many
functionalities and it is also hard to navigate.” was assigned
with the codes Task relevance and Smell severity. Moreover,
codes such as Smell false positive were also assigned to the
responses representing the reasons that the subject did not
select a specific code smell.

IV. ANALYSIS OF RESULTS

A. RQ1: What are the factors used by developers in the code
smell selection process?

Table II shows the factors used by developers when selecting
code smells according to our analysis. Clearly, Task relevance
was the most common factor used in the selection process,
where developers tended to select code smells related to their
tasks. Some of the responses made by the subjects were very
straightforward because they only considered the relevance
to their tasks (e.g., “It is related to the issue #4”), whereas
some of the responses were also concerned with factors in
addition to Task relevance (e.g., the response “It is related to
an issue that we will address soon, and it would be good if we

TABLE II
FACTORS USED IN SMELL SELECTION PROCESS

Code Number of responses
Task relevance 33
Smell severity 11
Task implementation cost 5
Testability 5
Co-located smells 4
Module importance 2
Readability 2
Smell false positive 2
Smell coupling 2
Maintainability 1
Refactoring cost 1
Understandability 1

TABLE III
FACTORS CONSIDERED TOGETHER IN SMELL SELECTION PROCESS

Code Number of responses
Task relevance, Smell severity 9
Task relevance, Testability 5
Task relevance, Readability 2
Task relevance, Smell coupling 2

can separate the logic into another class to make it testable
and more readable” is concerned with the Task relevance,
Testability, and Readability). These results support previous
studies showing that developers tend to refactor source code
mainly to support the implementation of their tasks [20], [21].

The second most common factor was Smell severity. We
did not provide the subjects with the severity values obtained
from the code smell detector used in this experiment in
order to prevent cognitive bias, i.e., the subjects might have
selected code smells with high severity values without actually
analyzing them. Instead, we provided the subjects with the
source code related to each code smell for the analysis. When
we analyzed the responses of the subjects, we assigned the
Smell severity code to responses that contained some specific
adverbs related to a degree such as too or very, e.g., “Functions
have too many dependencies for example screens, menus, etc.”
This indicated that the developers tended to consider the Smell
severity when they were selecting code smells.

In addition to the two factors mentioned above, the subjects
also considered other factors. For instance, one subject stated
the reason why they did not choose a particular smell as: “This
should be selected but we have just added a parameter in this
release. The major change is in FieldContentSelector.java.”
This indicates that the developer also considered the Task
implementation cost. Another subject indicated the reason why
they selected a code smell as “Two code smells in one file,”
which demonstrates that factors such as Co-located smells
were also considered by the subjects.

Furthermore, previous studies often used multiple factors to
detect and filter code smells, so we also conducted a further
analysis of the factors considered together when developers
selected the code smells, thereby obtaining insights into the
factors that should be used together when detecting or filtering



TABLE IV
FACTORS USED IN SMELL PRIORITIZATION PROCESS

Code Number of responses
Module importance 14
Task relevance 10
Testability 5
Smell severity 4
Maintainability 3
Refactoring cost 3
Co-located smells 2
Module dependency 2
Readability 2
Task implementation cost 2
Task importance 2
Task implementation risk 1

TABLE V
FACTORS CONSIDERED TOGETHER IN SMELL PRIORITIZATION PROCESS

Code Number of subjects
Module importance, Task relevance 4
Module importance, Testability 3
Task relevance, Testability 3
Co-located smells, Task relevance 2
Maintainability, Task relevance 2
Module importance, Readability 2
Module importance, Refactoring cost 2
Module importance, Smell severity 2
Readability, Task relevance 2
Readability, Testability 2
Smell severity, Task relevance 2

code smells. Thus, for each response given by the subjects, we
counted each pair of codes that appeared together more than
one time.

The results in Table III represent the pairs of factors that
the subjects considered together when selecting a code smell,
excluding the ones that were assigned to only one response.
It is apparent that the Task relevance and Smell severity were
the most common factors. For example, one of the subjects
stated the reason why they selected a code smell as: “This file
has to be changed according to the issue list in this release.
The functions are too long,” thereby mentioning two factors.
The second item in Table III comprises the combination of
Task relevance and Testability, where the results show that
Task relevance was the most common factor considered by
developers but it was also often considered together with
another factor, i.e., Testability in this case (e.g., “In this
release, we have to add specific behavior to fix a bug in issue
#4, and thus we have to refactor the code so that we can write
the unit test more easily.”).

In conclusion, Task relevance and Smell severity were the
most common factors used by developers in the code smell
selection process.

B. RQ2: What are the factors used by developers in the code
smell prioritization process?

Table IV shows the factors used by developers in the code
smell prioritization process. In contrast to the factors used
for code smell selection, Module importance was the most

common factor considered in the prioritization process. For
instance, one of the subjects stated that they ranked a code
smell with the highest priority because: “Util Class is a centric
class. This class is invoked by many classes. Thus, this class
should be fixed first.” Another subject stated that they ranked
a code smell with the second highest priority because: “It is
important but less important than the main UI class.” Thus,
the developers tended to first prioritize modules with important
roles in the system and then other modules with lower priority.

However, the second most common factor was still Task
relevance. We found that the numbers of tasks related to code
smells were often included in the responses. For example, one
subject mentioned that they assigned a code smell as the first
item to fix because: “It involves many issues,” and the reason
for the second smell was: “It only involves issue #1.” Another
subject gave a similar reason why a code smell was ranked
first: “This issue list has three issues related to this single file.
This should be considered the highest priority to be fixed.”

Furthermore, other factors such as the Refactoring cost
(e.g., “Low effort [for refactoring] is required.”) and Module
dependency (e.g., “This file should be addressed after the Util
class to consider the lower risk of the code change.”) were
also considered by the subjects.

As discussed earlier, many prioritization techniques have
been proposed based on combinations of multiple factors de-
spite the lack of empirical evidence in support of this approach.
To address this shortcoming, we also analyzed the factors
considered together when developers prioritized code smells.
We asked the subjects to state their reason for prioritizing each
code smell, but we combined the codes for every response
given by a subject in the investigation, which differed from
our analysis of the selection process. This is because code
smell prioritization is a comparative process, i.e., the subjects
had to compare different smells and give higher importance
to one smell, but less importance to others. Thus, we could
determine the pairs of factors used by developers to prioritize
code smells. The results, excluding the ones that were assigned
by only one subject, are presented in Table V. According to
these results, Module importance and Task relevance were the
most common factors considered together by developers when
prioritizing code smells (e.g., “It should be fixed first because
it is related to the issue and it is a share class.”). In addition,
the second pair that developers used most often was Module
importance and Testability (e.g., “It would be better if the main
class of the UI project is readable and testable. In addition,
it would reduce the time required for testing.”).

In summary, Module importance was the most common
factor used for prioritization and the second was Task
relevance.

C. Implications

As some existing techniques have already used the same
factors reported in this study [4], [5], [6], [7], [10], we
encourage the research community to keep focusing on the
factors, namely, Task relevance and Smell severity for future



development, thus improving the practical utility of these
research tools.

In addition to the main factors discussed above, various
other factors such as the Task implementation cost, Module
importance, or Module dependency have not been considered
by the research community when developing techniques. We
strongly recommend considering these factors when develop-
ing new techniques such as code smells detection, filtration,
and prioritization to propose opportunities for refactoring in
the future.

Lastly, because we observed some combinations of factors
assigned by many subjects, we encourage the development of
new techniques that consider such combinations.

V. THREATS TO VALIDITY

The internal validity of this study is dependent on the data
set that we used. First, the data set was designed for evaluating
a code smell prioritization technique for prefactoring, so it
may have missed some factors considered by developers in
different situations. Second, the subjects were not the main
developers of the project investigated in this study. Therefore,
the results may differ if experiments are conducted on a source
code that the developers are familiar with; for instance, they
may consider some code smells as false positives or may
select code smells that are indirectly impacted by changes.
Conducting investigations with the main developers of open
source projects may be beneficial.

Similar to other empirical studies, the external validity of
this study is dependent on the scale of the experiment. The
subjects differed in terms of their background and the number
of years of experience, but the number of developers who
participated in this study was only ten, and they might not
have been representative subjects. In addition, this study only
investigated one project with four types of code smells. Thus,
a larger scale study might be beneficial.

Finally, the construct validity might depend on the codes
that we assigned to each response. The process was conducted
by two investigators, but there may have been some bias
during the process. Furthermore, the responses obtained from
the subjects might not represent the actual reasons why they
selected or prioritized code smells. To mitigate this threat to
validity, we plan to conduct detailed follow-up interviews with
some of the subjects.

VI. CONCLUSION

In this study, we conducted an experiment to determine how
professional developers selected and prioritized code smells.
Our findings agree with previous studies where developers
gave higher priority to code smells related to their specific
context, i.e., the tasks upon which they were working. First,
Task relevance was the most common factor considered dur-
ing code smell selection, followed by Smell severity, and
both were also often considered together during the selection
process. Second, Module importance was the most common
factor in the code smell prioritization process, followed by

Task relevance. Moreover, other factors such as the Task
implementation cost and Co-located smells were considered
in both processes. We recommend that researchers and tool
developers focus on the factors used for code smell filtration
and prioritization identified in this study.

ACKNOWLEDGMENTS

This work was partly supported by JSPS Grants-in-Aid for
Scientific Research Numbers JP15K15970, JP15H02683, and
JP15H02685.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2006.

[3] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in Proc. ASE, 2013, pp. 268–278.

[4] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a
prioritization of code debt : A code smell intensity index,” in Proc.
MTD, 2015, pp. 16–24.

[5] F. A. Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering code smells
detection results,” in Proc. ICSE, 2015, pp. 803–804.

[6] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM J. Res. Dev., vol. 56, no. 5, pp. 9:1–9:13, 2012.

[7] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based code smells
prioritization for prefactoring,” in Proc. ICPC, 2016, pp. 1–10.

[8] R. Arcoverde, E. Guimaraes, I. Macia, A. Garcia, and Y. Cai, “Prioriti-
zation of code anomalies based on architecture sensitiveness,” in Proc.
SBES, 2013, pp. 69–78.

[9] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prioritize
code smells for refactoring,” Autom. Softw. Eng., vol. 23, no. 3, pp.
501–532, 2016.

[10] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based approach to
prioritize code smells for prefactoring,” J. Softw. Evol. Proc., 2017.
[Online]. Available: http://dx.doi.org/10.1002/smr.1886

[11] V. Rajlich, Software Engineering: The Current Practice. Chapman and
Hall – CRC, 2011.

[12] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-and fault-
proneness,” Emp. Softw. Eng., vol. 17, no. 3, pp. 243–275, 2012.

[13] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Proc CSMR, 2011, pp. 181–190.

[14] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in Proc ICSE,
2013, pp. 682–691.

[15] ——, “To what extent can maintenance problems be predicted by code
smell detection?–an empirical study,” Inf. Softw. Technol., vol. 55, no. 12,
pp. 2223–2242, 2013.

[16] ——, “Do developers care about code smells? An exploratory survey,”
in Proc. WCRE, 2013, pp. 242–251.

[17] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in Proc ICSME, 2014, pp. 101–110.

[18] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proc WRT, 2011, pp. 33–36.

[19] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proc CSMR, 2012, pp. 411–416.

[20] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” J. Syst. Softw., vol. 107, pp. 1–14, 2015.

[21] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Confes-
sions of GitHub contributors,” in Proc FSE, 2016, pp. 858–870.

[22] R. Hoda, J. Noble, and S. Marshall, “Using grounded theory to study
the human aspects of software engineering,” in Proc HAoSE, 2010, pp.
5:1–5:2.


