
Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki

Department of Computer Science
School of Computing

Tokyo Institute of Technology

INTRODUCTION

2

Code smell[1]

An indicator of a design flaw or a problem
in the source code

One of the factors that cause technical debt
Increases code component’s fault-proneness

[1]	M.	Fowler.	Refactoring:	Improving	the	Design	of	Existing	Code.	Addison-Wesley,	1999. 3

“Classes that have fields,
getting and setting

methods for the fields,
and nothing else.”

“Every time you make a
kind of change, you have

to make a lot of little
changes to a lot of
different classes.”

Data Class Feature Envy

Problem

4

The number of
code smell is

overwhelming

Related Work

5

[CSMR 2004]

Using history information to
improve design flaws

detection
Ratiu et al.

[MTD 2015]

Towards a Prioritization of
Code Debt: A Code Smell

Intensity Index
Fontana et al.

[ICSE 2015]

Filtering Code Smells
Detection Results

Fontana et al.

[ICPC 2016]

Context-Based Code Smells
Prioritization

for Prefactoring
Sae-Lim et al.

Code Smells Prioritization

Code Smells Filtration

Related Work

6

Historical
information

Smell severity

False positive

Task relevance

Code Smells Prioritization

Code Smells Filtration

Motivation

7

History
information

Smell severity

False positive

Task relevance

Code Smells Prioritization

Code Smells Filtration

No empirical evidence
on how developers
handle code smells

Research Questions

8

RQ1 : What are the factors used by
developers in the code smell
selection process?

RQ2 : What are the factors used by
developers in the code smell
prioritization process?

STUDY DESIGN

9

Data Collection

10

Summary

Description

Task

Class A God
Class B Data
Class C Blob
… …

Code smell

Line 1

Line 2

Line 3

Line 4

Solution

JabRef

+ x5 x22

Data Collection

11

Class A God

Class B Data

Class C Blob

… …

Code smells

✔

✔

Class C Blob

Class A God

… …

Code smells

①
②

This smell should be solved
because …

PrioritizationSelection

This smell should be solved
(in this order) because …

x10 x10

Coding Technique

12

It involves many issues. Task relevance

It is not a Blob Class after
looking into the code.

3 issues came from this
single class. This class is
too generic.

False positive

Task relevance,
Smell severity

Response Codes

RESULTS

13

15 Final Codes

14

Smell severity
Smell coupling

Co-located smells
Smell false positive

Testability
Readability

Maintainability
Understandability

Task relevance
Task importance

Task implementation cost
Task implementation risk

Module importance
Module dependency

Refactoring cost

RQ1: Selection Process

Code Number of responses

Task relevance 33
Smell severity 11
Task implementation cost 5
Testability 5
Co-located smells 4

15

Top 5 Factors

Code Number of responses

Task relevance, Smell severity 9
Task relevance, Testability 5

Factors considered together

RQ2: Prioritization Process

16

Top 5 Factors

Factors considered together

Code Number of responses

Module importance 14
Task relevance 10
Testability 5
Smell severity 4
Maintainability 3

Code Number of responses

Module importance, Task relevance 4
Module importance, Testability 3

CONCLUSION

17

Conclusion

18

How do developers select and prioritize
code smells?

Selection:
Task relevance

Smell severity

Prioritization:
Module importance

Task relevance

Take-home message

19

Smell severity
Task relevance

Smell false positive

Factors that have
been considered

Factors that have not
been considered

Testability
Readability

Smell coupling
Maintainability

Task importance
Refactoring cost

Co-located smells
Understandability

Module importance
Module dependency

Task implementation risk
Task implementation cost

