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INTRODUCTION

2



Code smell[1]

An indicator of a design flaw or a problem 
in the source code

One of the factors that cause technical debt
Increases code component’s fault-proneness

[1]	M.	Fowler.	Refactoring:	Improving	the	Design	of	Existing	Code.	Addison-Wesley,	1999. 3

“Classes that have fields, 
getting and setting 

methods for the fields, 
and nothing else.”

“Every time you make a 
kind of change, you have 

to make a lot of little
changes to a lot of 
different classes.”

Data Class Feature Envy



Problem
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The number of 
code smell is 

overwhelming



Related Work
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[CSMR 2004]

Using history information to 
improve design flaws 

detection
Ratiu et al.

[MTD 2015]

Towards a Prioritization of 
Code Debt: A Code Smell 

Intensity Index
Fontana et al.

[ICSE 2015]

Filtering Code Smells 
Detection Results

Fontana et al.

[ICPC 2016]

Context-Based Code Smells 
Prioritization 

for Prefactoring
Sae-Lim et al.

Code Smells Prioritization

Code Smells Filtration



Related Work
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Historical 
information

Smell severity

False positive

Task relevance

Code Smells Prioritization

Code Smells Filtration



Motivation
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History 
information

Smell severity

False positive

Task relevance

Code Smells Prioritization

Code Smells Filtration

No empirical evidence 
on how developers 
handle code smells



Research Questions
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RQ1 : What are the factors used by   
developers in the code smell 
selection process?

RQ2 : What are the factors used by   
developers in the code smell 
prioritization process?



STUDY DESIGN
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Data Collection
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Summary

Description

Task

Class A  God
Class B   Data
Class C   Blob
… …

Code smell

Line 1

Line 2

Line 3

Line 4

Solution

JabRef

+ x5 x22



Data Collection
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Class A  God

Class B   Data

Class C   Blob

… …

Code smells

✔

✔

Class C  Blob

Class A   God

… …

Code smells

①
②

This smell should be solved 
because …

PrioritizationSelection

This smell should be solved 
(in this order) because …

x10 x10



Coding Technique
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It involves many issues. Task relevance

It is not a Blob Class after 
looking into the code.

3 issues came from this 
single class. This class is 
too generic.

False positive

Task relevance, 
Smell severity 

Response Codes



RESULTS
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15 Final Codes
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Smell severity
Smell coupling

Co-located smells
Smell false positive

Testability
Readability

Maintainability
Understandability

Task relevance
Task importance

Task implementation cost
Task implementation risk

Module importance
Module dependency

Refactoring cost



RQ1: Selection Process

Code Number of responses

Task relevance 33
Smell severity 11
Task implementation cost 5
Testability 5
Co-located smells 4
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Top 5 Factors

Code Number of responses

Task relevance, Smell severity 9
Task relevance, Testability 5

Factors considered together



RQ2: Prioritization Process
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Top 5 Factors

Factors considered together

Code Number of responses

Module importance 14
Task relevance 10
Testability 5
Smell severity 4
Maintainability 3

Code Number of responses

Module importance, Task relevance 4
Module importance, Testability 3



CONCLUSION
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Conclusion
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How do developers select and prioritize
code smells?

Selection:
Task relevance

Smell severity

Prioritization:
Module importance

Task relevance



Take-home message
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Smell severity
Task relevance

Smell false positive

Factors that have 
been considered

Factors that have not 
been considered

Testability
Readability

Smell coupling
Maintainability

Task importance
Refactoring cost

Co-located smells
Understandability

Module importance
Module dependency

Task implementation risk
Task implementation cost


