
Context-Based Code Smells Prioritization
for Prefactoring

Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki
Department of Computer Science

Tokyo Institute of Technology
Tokyo 152–8552, Japan

Email: {natthawute, hayashi, saeki}@se.cs.titech.ac.jp

Abstract—To find opportunities for applying prefactoring,
several techniques for detecting bad smells in source code have
been proposed. Existing smell detectors are often unsuitable for
developers who have a specific context because these detectors
do not consider their current context and output the results that
are mixed with both smells that are and are not related to such
context. Consequently, the developers must spend a considerable
amount of time identifying relevant smells. As described in this
paper, we propose a technique to prioritize bad code smells using
developers’ context. The explicit data of the context are obtained
using a list of issues extracted from an issue tracking system.
We applied impact analysis to the list of issues and used the
results to specify which smells are associated with the context.
Consequently, our approach can provide developers with a list
of prioritized bad code smells related to their current context.
Several evaluations using open source projects demonstrate the
effectiveness of our technique.

I. Introduction
Code smell is an indicator of a design flaw or problem

in the source code which can affect important maintainability
aspects [1]. If applied properly, it can be solved by refactoring,
which is a technique for improving the software structure
without changing its functionality [2]. Code smells of many
types are summarized as a smell catalog with their names [2],
[3], [4]. Code smells are often introduced when implementing
new features and often by developers with high workloads [5].
Several factors, such as bad design decisions and low priority
assigned to software quality, can influence code smells [6].
A code smell detection strategy using a logical condition of
code metrics has been proposed [4]. Code smell detectors of
various types have been proposed by detecting these code
smells automatically [7].

In an issue-driven software development project, develop-
ment teams tend to adopt an issue tracking system such as
Jira or Bugzilla to manage their lists of issues. The issue
can be anything related to software change requests, e.g.,
bug fixing or feature implementation. When developers apply
refactoring techniques to source code before implementing
changes according to issues, we call this stage prefactoring
phase [8]. Many studies have highlighted the importance of
this prefactoring phase. Meng et al. [9] found that developers
do not typically refactor their code unless they must change
the code to fix some bugs or introduce new features. Bavota
et al. [10] supported this statement by asserting the possibility
that the only goal of refactoring, for developers, is to prepare

source code for future changes. Given that situation, modules
within the focus of the developers can be regarded as their
context. Such modules are likely to have higher priority to
fix code smell and improve code quality over others because
fixing code smells in them might contribute to support of
future implementation, i.e., improving the understandability
and extendibility of the source code. However, most exist-
ing techniques for detecting code smells and recommending
refactoring opportunities ignore such a context and output the
results only from analyzing the whole source code without
prioritizing the results or prioritizing them with factors that
are not related to the context of the developer, e.g., the
severity of each smell. Therefore, the time-consuming process
of identifying relevant outputs is left to developers, which is
similar to the fact that static analysis tools are not used well
by developers because of numerous detected warnings [11].

A clear need for a context-aware approach for code smell
detection is apparent in recent research in this area. Most
respondents to work done by Yamashita et al. [12] state that
developers need code smell detectors that support context-
sensitive or domain specific strategies. Work done by Bavota
et al. [10] suggests that the developer’s perspective should be
considered when proposing refactoring recommendations.

As described in this paper, we propose a technique to
prioritize code smells from code smell detectors by consid-
ering developers’ current context. This technique specifically
examines support of the prefactoring phase [8]. During the
prefactoring phase, developers facilitate implementation by
improving source code extendibility and understandability by
refactoring the source code before implementing a feature.
Using the proposed technique, change descriptions in an issue
tracking system that are going to be implemented using a
particular milestone are regarded as the developer context.
Such changes are going to be implemented by modifying or
extending existing modules in the source code. These existing
modules can be located using impact analysis [8], [13]. We
regard such modules as relevant modules because they are
likely to be the location for implementation of the new features
in the change descriptions. As a result, code smells that appear
in relevant modules should be assigned higher priority so that
the developers can readily distinguish them from irrelevant
code smells. With support from our technique, developers can
obtain a prioritized list of code smells based on their relevance



Fig. 1. Overview of the proposed technique.

to the context.
We have evaluated our technique using four open source

projects. The results demonstrate the effectiveness of our
technique.

The main contributions of this paper are the following:
1) showing the relevance between developers’ context and

code smells can be a useful criterion for prioritizing code
smells for prefactoring,

2) presenting a technique to use an issue tracking system to
estimate the context of developers using impact analysis,
and

3) presenting an empirical study related to context-based
code smell prioritization.

The remainder of this paper is organized as follows.
The next section describes our approach and its automated
toolchain. Section 3 presents our evaluation. Section 4 presents
a description of related work. Then Section 5 concludes this
paper.

II. Proposed Technique

As described in this paper, we specifically examine support
of an issue-driven software development project adopting an
issue tracking system to manage their lists of issues. Assuming
that such a project has a list of issues that must be implemented
before a particular milestone, i.e., releasing major or minor
versions, then such a list of issues is useful to estimate the
developers’ context. We regard the modules that are likely to
be modified as our estimation.

We propose a technique for prioritizing code smell detection
results from existing code smell detectors by considering the
list of issues in the issue tracking system that developers must
solve. Figure 1 presents an overview of our technique. Each
gray node represents a subprocess of our technique. The input
of the process is a list of issue change descriptions obtained
from the issue tracking system and the source code of the
targeted project. The output is the prioritized list of code smells
based on the relevance to the developer context. Our approach

Summary: Autosave turned off for Untitled Documents.

Description: I have an issue where sometimes untitled doc-
uments get left on to disk. I think it’s an issue
when the app closes improperly in some way.

An option to never save untitled documents
would be a nice feature and would solve this
issue.

Fig. 2. Example portion of an issue in issue tracking system.

first uses impact analysis to obtain a list of modules that are
likely to be the targeted modules of each change description.
Next, we generate a list of code smells by application of
an existing code smell detector with the source code of the
focused project. Then, for each code smell in the list, we
calculate the Context Relevance Index (CRI) based on the
relevance of the prior result from impact analysis. Finally, we
output the prioritized list of code smells ordered by the CRI
value.

Our approach uses the existing impact analysis and code
smell detection techniques. The following subsections present
an explanation of these techniques and their application.

A. Using Impact Analysis

During software development process, developers can mod-
ify some modules to satisfy a change request, e.g., bug fixing
or feature implementation. Developers might first use their
experience, system knowledge, or technique such as feature
location [13] to identify at least one module that is relevant
to the change request. Then, they perform impact analysis to
specify the full impact set, where the system is likely to be
affected by such changes [8], [14].

Impact analyses of various types take different inputs, e.g.,
natural language query, execution scenario, or source code
artifact [13]. Gethers et al. [15] proposed a combination tech-
nique to perform impact analysis depending on the source of
contextual information available to each software project, e.g.,
information retrieval, mining software repository, or dynamic
analysis.

Figure 2 presents an example of an issue in issue track-
ing system of jEdit project. We consider the information
in Summary together with Description field as a change
description. In our technique, impact analyses that take a
change description d and source code C as inputs and provide
a set of modules M = {. . . ,m, . . . } with their probability as
outputs were the types that we chose because we specifically
examine support of issue-based software development projects
in which developers tend to implement features or fix bugs
by following the change descriptions in an issue tracking
system. In this situation, we assume that such a change
description describes the new behavior of an existing feature,
i.e., fixing a bug or improving functionality. These existing
features can be located using impact analysis. Therefore, the
located modules of these features can be candidates to be
modified to achieve the change. Consequently, applying the



TABLE I
Example Portion of Code Smell Detector Results

Type Entity Granularity Severity
SAP Breakers org/gjt/sp/jedit Subsystem 6
Blob Class org.gjt.sp.jedit.Buffer Class 7
Feature Envy buildDOM() : void Method 10

prefactoring technique to these modules is likely to support the
developers’ implementation, i.e., improving understandability
or extendibility of the source code. The impact analysis of this
type suits our needs.

As described in this paper, we input a set of change
descriptions D = {d1, . . . , dn} and source code C to the impact
analysis and obtain a series of sets of modules {M1, . . . ,Mn}.
As described herein, modules can be either classes or methods.

B. Using Code Smell Detection Technique

Code smell detection generates a list of code smells from
the targeted source code. One example of the approaches is
to detect them based on particular metric values, e.g., lines
of code (LOC). The input is the source code that we want to
analyze. The output is a list of smells. Each smell consists
of ⟨type, entity, granularity, severity⟩, where type stands for
the type of the detected smell, entity signifies the module
having the detected smell, granularity denotes the level of code
smell consisting of subsystem, class, and method, and severity
is an integer value representing the strength of the smell,
for example, Marinescu defined in [16] as: “Severities are
computed by measuring how many times the value of a chosen
metric exceeds a given threshold”. Table I presents an example
of code smell result from inFusion [17], a code smell detector
that we used in this research. For example, the second row
shows the Blob Class smell in org.gjt.sp.jedit.Buffer
class with severity 7. We have omitted the package and class
name of the method level smell.

In this approach, we apply the code smell detector and
obtain the list of smells S .

C. Context Relevance Index

To assign the priority of each smell, we define the Context
Relevance Index (CRI) attribute. The value of the CRI attribute
is calculated using the weighted summation of the number of
the modules in the result from impact analysis that match each
smell’s entity. The CRI of each s ∈ S is definable as

CRI(s) =
n∑

i=1

∑
m∈Mi

w(m), if match(m, entity)
0, otherwise,

where the predicate match(m, entity) holds when module m
equals to or belongs to entity of each smell, and where
w(m) stands for the probability of each module. If m is a
method, and entity having code smell is also a method, then
match(m, entity) holds when m and entity are the same. For
the case in which m is a method, but entity having code smell
is a class, match(m, entity) holds when m is in entity class.

Fig. 3. TraceLab configuration.

III. Empirical Studies

A. Research Questions

We conducted an empirical study to validate our approach
with the following research questions.

RQ 1: Which code smell granularity provides a better
ranking: Coarse-grained or fine-grained?

RQ 2: Does the accuracy of impact analysis affect quality
of the ranking?

RQ 3: Does context-based smell prioritization provide more
relevant results than the severity-based smell prioritization?

The aim of these research questions is to validate the
approach of using the context of developers to prioritize
code smells. Details of the motivations of respective RQ are
explained later.

B. Experimental Setup

1) Experimental Implementation: We have implemented an
automated tool for use with the proposed technique. The chain
is designed to connect with an existing impact analysis tool.
When executed, our tool trigger a code smell detector to
generate a list of smells and to calculate the CRI of each smell
based on the relevance of the result from impact analysis.

For impact analysis, we use tools proposed by Dit et al. [18]
together with a TraceLab-based solution [19], [20] to compute
the vector space model and latent semantic indexing. Then,
we filter out the unrelated modules using the execution trace
available in the dataset. These techniques were chosen because
they are the impact analysis that take a text document such as
a change description as a query and find a relevant code based
on statistical methods. Figure 3 portrays our configuration in
TraceLab which is based on [20].

For smell detection, we use inFusion ver. 1.9.0 [17] because
1) it can detect code smells of 24 types such as Blob
Class, Data Class, or Feature Envy, 2) all detected smells are
associated with the severity score, and 3) its detection process
can be automated. These characteristics suit our approach.



TABLE II
Dataset Information

Project Version Size (LOC) # Issues # Method level smells # Class level smells
ArgoUML 0.22–0.24 309,468 91 412 61
JabRef 2.0–2.6 72,555 39 60 37
jEdit 4.2–4.3 140,592 150 184 51
muCommander 0.8.0–0.8.5 88,455 92 44 41

2) Data Collection: In this evaluation, four open source
projects, ArgoUML1, Jabref2, jEdit3, and ArgoUML4, active
open source projects, were our subjects because their data
are available through the benchmark dataset [13] of Dit et
al. The dataset includes the list of Summary and Descrip-
tion information, the list of executed methods, and the gold
set methods of each issue during analyzed period. Table II
presents information of our datasets including the size of the
source code of the earlier version, the number of issues that
we used in between two versions, and the number of smells
detected by inFusion ver. 1.9.0 [17].

We first defined the oracle as a set of code smells that occur
in the modules that were modified by developers during two
releases according to the data in the benchmark dataset be-
cause these code smells are relevant to the developers’ context
as we discussed in the previous section. As for ArgoUML, we
prepared the oracle by first applying the source code at version
0.22 to the code smell detector and obtained the result. Next,
we used the gold set methods, the methods that were actually
modified to solve extractable issues in jEdit’s issue tracking
system, from the benchmark dataset during version 0.22 and
0.24. Finally, we intersected these two sets to obtain a list of
smells that are actually related to the developer context. We
applied the same process to JabRef ver. 2.0–2.6, jEdit ver.
4.2–4.3 and muCommander ver. 0.8.0–0.8.5.

Regarding the baseline of our evaluation, we used the orig-
inal result from inFusion sorted by the severity of respective
smells by applying a stable sort to the original result.

3) Data Analysis: To evaluate the results of our ap-
proach, we used Normalized Discounted Cumulative Gain
(nDCG) [21], [22], which is the normalization of Discounted
Cumulative Gain (DCG), as a criterion. DCG is a popular
measure for evaluating the quality of ranking documents with
the assumption that the relevant documents appearing in the
higher position of the list are more useful than those appearing
in the lower position of the list. Furthermore, each relevant
item can be graded according to the degree of relevance
using numerical number. Actually, DCG is calculable using
the following formula:

DCGp = reli +
p∑

i=1

reli
log2(i)

1http://argouml.tigris.org/
2http://www.jabref.org/
3http://www.jedit.org/
4http://argouml.tigris.org/

where reli is the graded relevance of the result at rank i and
p is the length of the given ranking. Then, nDCG can be
computed by normalizing DCG as

nDCGp =
DCGp

IDCGp
,

where IDCG is the Ideal DCG, the maximum DCG value we
can obtain from the ranking result.

The relevant documents in this study are the code smells
that match the items in the oracle. The retrieved documents
are the code smells in the result from the code smell detector.
We defined reli as the number of issues in the dataset that
are related to a code smell. Because our assumption is that
solving a code smell related to multiple issues is more useful
than solving one unrelated or related to only one issue, a code
smell that relates to many issues is expected to have a higher
degree of relevance when calculating nDCG.

Therefore, because our technique involves rearranging the
result from a code smell detector and assigning a higher rank
to relevant code smells, the nDCG of the result from our
technique is expected to be higher than the baseline of our
evaluation, i.e., the original result from the code smell detector.

We calculated the nDCG of the baseline and calculated the
result from our tools ordered by the CRI of each smell for all
subjects.

C. RQ 1: Which code smell granularity provides a better
ranking: Coarse-grained or fine-grained?

1) Motivation: Code smell detection tools often classify
smell granularity as coarse-grained or fine-grained, e.g., class
level and method level. Solving code smells of both types is
likely to improve the source code quality. If developers solve
code smells in the module that they are going to modify,
then it would support their implementation. In the case of
coarse-grained smells, solving the code smell in one class is
likely to support the implementation under that class, including
implementation of the methods of that class as well. However,
in the case of fine-grained smells, solving the code smell
in one method is likely to help only the implementation
under that method, even though the understanding of how to
solve it is easier. Therefore, we suspect that, in context-based
prioritization, coarse-grained and fine-grained granularity code
smells would yield different ranking quality.

2) Study Design: To answer this question, we conducted
two independent experiments. We applied our technique for
fine-grained (method level) code smells in the first experiment
and coarse-grained (class level) code smells in the second one.
We used method level impact analysis to prioritize method



ArgoUML JabRef jEdit muCommander
0

0.2

0.4

0.6

0.8

1

0.3

0.57

0.38

0.81

0.62

0.37

0.49
0.4nD

C
G

Baseline Our technique

(a) Fine-grained (Method) level.

ArgoUML JabRef jEdit muCommander
0

0.2

0.4

0.6

0.8

1

0.54

0.83 0.83

0.56

0.84

0.96 0.95 0.95

nD
C

G

Baseline Our technique

(b) Coarse-grained (Class) level

Fig. 4. Comparison of the nDCG value between results of baseline and our approach.

ArgoUML JabRef jEdit muCommander
0

20

40

60

80

100

%
of

m
et

ho
ds

1 issue 2 issues 3 issues >3 issues

(a) Fine-grained (Method) level.

ArgoUML JabRef jEdit muCommander
0

20

40

60

80

100

%
of

cl
as

se
s

1 issue 2 issues 3 issues >3 issues

(b) Coarse-grained (Class) level.

Fig. 5. Comparison of the commonality between method and class level.

level code smells, whereas we used class level impact analysis
for prioritizing class level code smells.

3) Results and Discussion: Figures 4a and 4b present
results of our experiments. In the fine-grained case, our tech-
nique can provide ranking qualities with the minimum nDCG
0.37 and maximum nDCG 0.62. However, in the coarse-
grained case, our technique can provide ranking qualities
with the minimum nDCG 0.84 and maximum nDCG 0.96.
As comparison of these two cases shows, the coarse-grained
granularity code smell can yield a better ranking. Note that
we used the vector space model with dynamic analysis (see
detail in the next subsection) as an impact analysis because it
produced the best result.

When comparing the ranking quality between baseline and
the results obtained using our technique, in case of the class
level code smell, our approach provides better ranking quality
in every case. However, in the method level code smell
case, our approach generates better ranking quality than the
baseline for ArgoUML and jEdit projects, but fails to do so
for JabRef and muCommander projects. We investigated the
results and found that many smells have zero CRI, but they are
related with the items in the oracle. Therefore, our approach

predicted that these smells are unrelated to the developers’
context although they actually are related. One reason for
that phenomenon might be the accuracy of impact analysis.
Because our technique relies solely on the result of impact
analysis, the accuracy of impact analysis can also affect the
accuracy of our technique. That is to say, the impact analysis
might have failed to locate the correct module that is the target
of a change description. Consequently, our method incorrectly
predicted that this smell is not related to the developer context
and thereby assigned it to the lower rank of the list. The impact
of the accuracy of impact analysis to our approach is discussed
in the next sub section. The reason that this is not the case for
class level smells is that module m from impact analysis result
must equal to or belong to entity of each smell s when we
calculate the CRI value of each smell. Therefore, the coarse-
grained level code smells, such as class level code smells, tend
to satisfy the criterion more than the fine-grained level code
smells, such as method level code smells. This fact indicates
that our technique is more appropriate for use with coarse-
grained level code smells.

We conducted further investigation into the reason for this
phenomenon by analyzing the commonality of issues in the



issue tracking system. As Figs. 5a and 5b show, most of the
method were modified by only one issue, with the average
issues per method of 1.17, 1.13, 1.28, and 1.13, respectively,
for ArgoUML, JabRef, jEdit, and muCommander. However,
there are many classes that were modified by more than
one issue with the average issues per class of 1.37, 1.46,
2.01, and 1.36, respectively, for ArgoUML, JabRef, jEdit,
and muCommander. In other words, method level smells are
too fine-grained in terms of the commonality of issues, it
is difficult to specify very relevant smells for the project’s
context. Preferably, coarse-grained ones can be related to
multiple issues. Consequently, solving code smells at the class
level would contribute more to issue implementation than
solving the code smell at the method level.

D. RQ 2: Does the accuracy of impact analysis affect quality
of the ranking?

1) Motivation: In this study, we limit the input of the tech-
nique to only the source code and change descriptions to reflect
real-world circumstances in which information availability is
limited. Therefore, in our technique, the only criteria that
would impact the ranking quality of our result are results from
impact analysis. Investigating how different impact analyses
affect the ranking quality can enable us to find the appropriate
impact analysis for context-based code smell prioritization.

2) Study Design: To understand the impact of the accuracy
of impact analysis, we selected some impact analyses from
work by Gethers et al. [15] to observe differences related to
accuracy among them. Their work’s aim is to integrate differ-
ent impact analysis to improve the overall accuracy of each
independent technique, but also showed that different impact
analysis approaches yield different accuracies of the result.
They discussed differences among combinations of these three
techniques: information retrieval (IR), dynamic analysis (Dyn),
and mining software repository (MSR). Actually, IR and the
combination of IR and Dyn were our candidates because
they require only the change description and execution trace,
which are common during the processes of iterative software
development. We excluded the technique of MSR because we
want to limit the input of the technique to the source code
and change descriptions. Regarding IR techniques, we use the
vector space model and latent semantic indexing because they
are both vector-based techniques but are applied with different
mechanisms. Our assumption is that different techniques can
be expected to influence the result of our approach, even
though they are IR-based techniques. The next paragraphs
present overviews of the respective techniques we used for
this study.

Vector Space Model (VSM) is a model used mostly for
information retrieval by representing documents and queries
as vectors [23]. Then, the relevance of documents and queries
is obtainable by calculating their mutual cosine similarity. For
impact analysis, documents are source codes of a specific
project; queries are change requests from the issue tracking
system. The results then are the relevance between source code
and change requests.

Latent Semantic Indexing (LSI) [24] is based on VSM, with
the intention to handle the situation of synonymy, a group of
words that share similar meanings, and polysemy, words that
have multiple meanings. Actually, LSI is used for assessment
of the similarity between documents from the common words
two documents contain rather than simple terms. The more
common words they have, the more similar they are. Details
of the techniques we used for this study can be found in an
earlier report of the literature [15].

Dynamic Analysis (Dyn) uses the execution traces of the
given program. In some cases, the execution trace of the
specified change request is attached by the submitter. How-
ever, developers themselves can obtain it by reproducing the
steps specified in the change request as well. Such run-time
information is useful to filter out the result from IR technique
because the modules that are not in execution trace are unlikely
to be affected by the change request.

According to work by Gethers et al. [15], different cut
points in the same technique also contribute to different
accuracy of impact analysis. As described in the paper, the
combination of different impact analysis might decrease the
accuracy of impact analysis at certain cut points. Therefore,
we also include different cut points of impact analysis into our
assumption.

3) Results and Discussion: Figure 6 presents a comparison
of nDCG value of different impact analysis. As the graph
shows, each impact analysis and each cut point provide
different nDCG values. In most cases, VSM+Dyn yields better
results than VSM; LSI+Dyn yields better results than LSI.
Additionally, higher cut points tend to generate better results
than lower cut points. It is noteworthy that our intent is not
finding the technique that can provide best result, but analyzing
the impact of the accuracy of each technique.

We conclude that, when using different impact analyses,
either IR-based alone or the combination of IR-based and
dynamic analysis, one can expect that different techniques in
the same IR-based category (VSM or LSI) or even different
cut points in the same technique contribute to the quality of the
ranking from our technique. Because the main characteristic
that would differ among respective techniques is the accuracy,
e.g., precision, recall, or F-1 measure, it would be natural to
consider the relation between the quality of our result and the
accuracy of impact analysis.

We considered the relation between nDCG and the accuracy
of impact analysis using Spearman’s correlation coefficient to
evaluate the association between two variables. By considering
Fig. 7c, we can see the relation between nDCG and the F-1
measure of each technique. The value of Spearman’s corre-
lation is approximately 0.37, indicating a weak but positive
relation between the nDCG and F-1 measure. The reason
underlying this weak relation might be the low value of F-
1 measures.

Figure 7a presents similar results to those of the F-1
measure. The Spearman’s correlation value is approximately
0.24, also indicating a weak but positive relation between



VSM LSI VSM+Dyn LSI+Dyn
0

0.2

0.4

0.6

0.8

1

0.
69 0.

73

0.
87

0.
84

0.
79 0.
8

0.
88

0.
87

0.
81

0.
8

0.
93

0.
88

0.
8

0.
79

0.
93

0.
91

0.
83

0.
81

0.
93

0.
91

nD
C

G

Cut point 5 Cut point 10 Cut point 20 Cut point 30 Cut point 40

Fig. 6. Comparison of the nDCG value between results obtained using different impact analysis approaches.

2 · 10−2 6 · 10−2 0.1 0.14

0.5

0.6

0.7

0.8

0.9

1

Precision

nD
C

G

(a) Precision (r = 0.24).

0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1

Recall

nD
C

G

(b) Recall (r = 0.48).

5 · 10−2 0.1 0.15

0.5

0.6

0.7

0.8

0.9

1

F-1
nD

C
G

(c) F-1 measure (r = 0.37).

Fig. 7. Relation between the accuracy of impact analysis and the ranking quality of our technique.

nDCG and the precision value. We also suspect that the reason
behind this relation is the low precision value.

However, when considering Fig. 7b which represents the
results of nDCG value at different recall values, the relation
between two variables can be understood. The calculated
Spearman’s correlation value is approximately 0.48, indicating
a moderate positive correlation. A tendency exists for high
recall values to go with high nDCG values (and vice versa).

Therefore, we conclude that the accuracy of impact analysis
tends to affect the quality of the ranking suggested by our tech-
nique. The higher the accuracy of impact analysis becomes,
the better the quality of ranking our technique can provide.
Moreover, because the correlation coefficient between nDCG
and recall is higher than those between nDCG and precision,
and nDCG and recall, it can be said that recall affects our
technique the most. Therefore, our technique is more suitable
with high-recall impact analysis.

E. RQ 3: Does context-based smell prioritization provide more
relevant results than the severity-based smell prioritization?

1) Motivation: The main objective of this study is to pro-
pose that context-based smell prioritization can be an efficient
method for the support of the prefactoring phase. Therefore,

we answer this research question to ascertain whether context-
based smell prioritization produces more suitable results for
supporting the prefactoring phase than the severity-based ap-
proach.

2) Study Design: We applied our technique with the dataset
at the class level because it can provide a better ranking, as
discussed in RQ 1. We used the combination of VSM and
Dyn at the cut point 40 items because this configuration could
produce the best results according to RQ 2 in Fig. 6.

3) Results and Discussion: As Fig. 4b shows, the nDCG
value of the results from our technique is higher than the
nDCG of the baseline. Therefore, after prioritizing the list
of smells using our technique, smells that are related to the
developers’ context were on the higher rank of the list. As
a result, the developers can specifically examine the top rank
smells directly without specifying which smell is or is not
related to their context.

Table III presents a comparison of the top ten ranking
between the baseline and our approach. Each row displays the
rank of the smell, type of smell, name of module having the
smell, and number of issues actually modified in the module.
We highlighted the code smell that is actually relevant to
developers’ context, i.e., smells in our oracle. It is apparent that



TABLE III
Comparison of the Ranking Items between the Baseline and Our Approach

(a) ArgoUML: Baseline

Rank Smell Type Class Name Severity #Issues
1 Blob Class GeneratorCSharp 8
2 Blob Class GeneratorJava 8
3 God Class FigAssociation 8 5
4 Blob Class ParserDisplay 8 1
5 Blob Class GeneratorPHP4 7
6 Refused Parent Bequest FigClassifierRole 7 3
7 Blob Class Modeller 7 1
8 Schizophrenic Class Import 6
9 God Class CoreFactoryMDRImpl 5 1

10 Refused Parent Bequest StylePanelFigText 5

(b) ArgoUML: Our approach

Rank Smell Type Class Name CRI #Issues
1 God Class Project 7.90 3
2 God Class ProjectBrowser 4.04 7
3 Blob Class ProjectBrowser 4.04 7
4 Schizophrenic Class StylePanel 2.43 1
5 God Class FigNodeModelElement 2.18 4
6 God Class UMLMutableGraphSupport 1.54
7 Blob Class GeneratorCSharp 1.04
8 God Class FigEdgeModelElement 0.94 3
9 God Class ExtensionMechanismsHelperMD 0.91 1

10 God Class CoreFactoryMDRImpl 0.80 1

(c) JabRef: Baseline

Rank Smell Type Class Name Severity #Issues
1 God Class BasePanel 10 4
2 God Class JabRef 10 7
3 God Class EntryEditor 10 6
4 God Class JabRefFrame 10 5
5 Data Class GUIGlobals 10
6 God Class Util 5 8
7 God Class EntryTableModel 5
8 God Class GroupsTree 5
9 Schizophrenic Class Option 4

10 God Class JabRefPreferences 4 3

(d) JabRef: Our approach

Rank Smell Type Class Name CRI #Issues
1 God Class JabRef 6.37 7
2 Blob Class JabRef 6.37 7
3 God Class EntryEditor 3.99 6
4 Blob Class EntryEditor 3.99 6
5 God Class Util 3.04 8
6 God Class BasePanel 2.81
7 God Class ImportFormatReader 2.73
8 God Class JabRefFrame 2.64 5
9 God Class MainTable 1.84 2

10 God Class BibtexDatabase 1.73

(e) jEdit: Baseline

Rank Smell Type Class Name Severity #Issues
1 God Class jEdit 10 10
2 God Class View 10 12
3 Data Class Debug 10
4 God Class Buffer 10 12
5 God Class TokenMarker 9 4
6 God Class Gutter 9 5
7 Data Class DirectoryEntry 8
8 Blob Class JEditTextArea 8 5
9 God Class ClassGeneratorUtil 7

10 God Class TarEntry 7

(f) jEdit: Our approach

Rank Smell Type Class Name CRI #Issues
1 God Class Buffer 16.83 12
2 Blob Class Buffer 16.83 12
3 God Class jEdit 14.43 10
4 God Class BeanShell 11.66
5 God Class GUIUtilities 7.88 7
6 God Class View 7.09 12
7 Blob Class SearchAndReplace 6.23 9
8 Blob Class JEditTextArea 6.08 5
9 God Class TextAreaPainter 5.46 3

10 God Class Gutter 5.28 5

(g) muCommander: Baseline

Rank Smell Type Class Name Severity #Issues
1 God Class JnlpTask 10
2 God Class StatusBar 7 1
3 God Class WindowManager 6 2
4 God Class FileTable 6 14
5 Schizophrenic Class CommandManager 5 1
6 God Class FileFactory 5 3
7 God Class HTTPFile 4 2
8 Data Class isoPvd 4
9 Data Class FileCollisionChecker 4

10 Schizophrenic Class ActionKeymap 4 4

(h) muCommander: Our approach

Rank Smell Type Class Name CRI #Issues
1 God Class FileTable 12.01 14
2 God Class FolderPanel 7.85 7
3 God Class AbstractFile 7.44 2
4 Schizophrenic Class LocalFile 6.34 7
5 God Class StatusBar 3.98 1
6 Schizophrenic Class StatusBar 3.98 1
7 God Class WindowManager 3.78 2
8 God Class FileFactory 3.74 3
9 Schizophrenic Class CommandManager 3.66 1

10 God Class CommandManager 3.66 1

the result of the baseline tends to be mixed between relevant
and irrelevant smells while our approach tends to put relevant
smells to the top of the list. Moreover, the number of related
issues of each smell in the baseline tends to be scattered,
i.e., sometimes with a high value at the top of the list and
sometimes with a low value at the top of the list. In contrast,
our approach tends to put code smells with the high number
of related issues to the top of the list because our assumption
is that solving code smell with the high number of related
issues would be more beneficial to developers, i.e., improving

understandability and extendibility of the source code, than
solving the code smell with the low number of related issues.

We further analyzed the result by considering the 2nd rank
of jEdit project in the result obtained using our technique. That
is the Blob Class smell of class org.gjt.sp.jedit.Buffer.
This smell was ranked 11th in the baseline. However, by
application of our technique, this smell became the 2nd rank
of the list with the highest CRI because this smell is related
with many issues that must be resolved by the developers.
We confirmed it by investigating the actual changes made



during revision 4.2–4.3. Results showed that, out of 150 issues,
12 issues were implemented in this class which contains
this God Class smell. Therefore, if the developers realized
the importance of this smell and fixed it, then it might be
able to facilitate their implementation, i.e., improving the
understandability of source code for 12 issues.

In contrast, when considering the 1st rank of muCommander
project in the baseline that is the God Class smell of the class
com.mucommander.ant.jnlp.JnlpTask was ranked 27th in
the result from our technique. This is also true because our
technique predicted that this smell is not related in any way
with any issue in the issue tracking system. Our technique
assigned zero CRI to this smell. We also investigated the
actual change and found no issue implemented in this class.
Consequently, if the developers picked the 1st smell in the
original result from the code smell detector and fixed it, then
it might not support their implementation for any issue at all.

This evidence indicates that a list of smells ordered by
the relevance to developers’ context can support developers’
implementation more than the original order such as severity.

F. Threats to Validity

One biggest threat to construct validity is the oracle dataset
that we used. Because the oracle was extracted based on the
changes in version control repositories, it might lack some
important modules that were not modified by solving the
given issues but should be refactored. A typical example is
the modules that were needed to understand to make changes;
refactoring them contributes to improve understandability.
Also, one can improve the extendibility of a module without
refactoring it directly, but refactor another related module
instead. However, it is not easy to extract such modules in an
empirical way. Version control and issue tracking repositories
do not contain such information in a formal way. Although
the use of fine-grained interaction history of developers such
as Mylyn logs [25] might be useful to confirm the context
of developers more explicitly, collecting the histories of such
type is another challenge [26].

IV. Discussion

A. Context vs. Severity: Which is Better in General?

Many studies have been proposed to detect or prioritize code
smells based on the severity, e.g., how bad the smells are.
Such severity-based techniques are very useful and appropriate
when the development team wants to improve the overall
quality of the software. Solving code smells that contribute
most to the decay of the source code is likely to be more useful
than solving those which have little effect on the system.

However, in the real world situation, development teams
have limited time for delivery the product, not to mention
improved quality of the source code. Many reports have
described that developers refactor their code only when they
must modify source code [9]. In this situation, solving the
most severe code smell might not be the best option because
solving such smells might not contribute to supporting de-
velopers’ implementation directly. In contrast, solving code

smells according to context-based detection or prioritization
might provide better alternatives because solving context-
related smells is likely to facilitate the implementation of
developers.

No clear distinction exists to indicate which smell priori-
tization type is the best approach. Developers can select the
most appropriate approach depending on their situation.

B. Can Our Approach Predict the Smells to be Refactored?

The aim of our technique is not to predict the smells that
will be refactored by developers. One might consider conduct-
ing an empirical study to confirm whether or not the provided
ranking of smells by the proposed technique fits the modules
to be refactored. For example, Bavota et al. [10] investigated
the relation between the quality of a software product and
related refactoring activities and provided a dataset of the
refactored class level smells. We measured the accuracy of
rankings of ArgoUML ver. 0.22–0.24 using the number of
refactorings applied to smells as the oracle extracted from
this dataset provided by Bavota et al. [10]. As a result, all
of the techniques produced the rankings of poor quality. We
obtained the nDCG values of 0.32, 0.34, 0.45, 0.23, and 0.22,
respectively, for the baseline (severity-based technique), VSM,
LSI, VSM+Dyn, and LSI+Dyn (context-based techniques).
Because developers in the current development style do not
solve smells frequently [10], most recommended smells on
the rankings were not actually refactored even if they should
be refactored. Our aim is not to predict the smells that current
software developers are solving but to recommend the smells
that have enough impact on their development.

V. RelatedWork

Because code smell detectors tend to generate a huge
number of smells, many techniques have been proposed to
reduce the number of code smell detection results. Fontana
et al. [27] proposed a technique to reduce the number of
code smell detection results by application of strong and weak
filters, but the method limits the technique to code smells
of five types. Arcoverde et al. [28] presented four heuristics
to prioritize code smells based on the relevance of potential
contribution to software architecture degradation. Ratiu et
al. [29] used historical information to filter out the entities
that might not have a negative effect from the original results
detected using single-version strategy. They also identified
most dangerous smells using additional analyzed historical
information. However, their technique is limited to God Class
and Data Class code smells. Fontana et al. [30] also introduced
Code Smell Intensity index as a criterion to prioritize code
smells. The approach devotes attention specifically to the most
severe smell instances, but it is limited to code smells of seven
types, whereas our approach specifically examines the more
context-related smell instances. Moreover, it is not limited to
specific smells. The novel point of our approach compared
to them is that our approach is applicable to smells of many
kinds. We prioritize every smell in the detection result based
on the relevance to the developers’ context.



Some existing techniques also use the context of developers
to detect code smells [31], [32], but they can be regarded as
supporting the postfactoring phase because such techniques
detect code smells during the source code editing process used
of developers.

Vidal et al. [33] proposed a technique to prioritize code
smells based on three criteria: historical information of com-
ponent modification, relevance of type of code smell from
developers’ perspective, and modifiability scenarios of the
system. The technique prioritizes code smells based on the
context of developers using modifiability scenarios. However,
such information requires manual work specifying scenarios
and related source code components. In contrast, our technique
processes this step automatically. Consideration of other fac-
tors such as past modification of components or code smell
type preferences of developers remains as a subject of our
future work.

VI. Conclusion

As described in this paper, we proposed a technique for
prioritizing code smell detection results by consideration of
developers’ current context. The result of our technique is
a list of prioritized smells based on the relevance to the
developer context. The more relevant to the developer context,
the higher the rank that smell is placed on the list. Therefore,
our approach can assist the developers prioritizing code smells
for the prefactoring phase. Our technique is useful for planning
how to prefactor the source code before implementing sets of
issues in an issue-tracking system. Our preliminary evaluation
indicated that our technique can be useful.

Our future work includes conducting case studies to confirm
that relevant code smells, as defined in this context, are useful
to developers. Furthermore, we must consider other factors that
might affect developers’ decisions related to fixing smells, e.g.,
the severity of smells, the effort needed to fix the smells, and
the importance of the issues. In addition, more projects must
be undertaken to evaluate our technique.

Acknowledgment

This work was partly supported by a JSPS Grant-in-Aid for
Scientific Research (Nos. 15H02685 and 15K15970).

References
[1] A. Yamashita and L. Moonen, “Do code smells reflect important

maintainability aspects?” in Proc. ICSM, 2012, pp. 306–315.
[2] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley”, 1999.
[3] W. C. Wake, Refactoring Workbook. Addison-Wesley, 2003.
[4] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.

Springer, 2006.
[5] M. Tufano, F. Palomba, G. Bavota, and R. Oliveto, “When and why

your code starts to smell bad,” in Proc. ICSE, 2015, pp. 404–414.
[6] T. Vale and I. S. Souza, “Influencing Factors on Code Smells and

Software Maintainability: A Cross-Case Study,” in 2nd Workshop on
Software Visualization, Evolution and Maintenance, 2014.

[7] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of
current knowledge,” Journal of Software Maintenance and Evolution,
vol. 23, no. 3, pp. 179–202, 2011.

[8] V. Rajlich, Software Engineering: The Current Practice. Chapman and
Hall/CRC, 2011.

[9] N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does automated
refactoring obviate systematic editing?” in Proc. ICSE, 2015, pp. 393–
402.

[10] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

[11] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” in Proc.
ICSE, 2013, pp. 672–681.

[12] A. Yamashita and L. Moonen, “Do developers care about code smells?
An exploratory survey,” in Proc. WCRE, 2013, pp. 242–251.

[13] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[14] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

[15] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proc. MSR, 2012, pp. 430–
440.

[16] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9:1–9:13, 2012.

[17] Intooitus, “inFusion,” http://www.intooitus.com/products/infusion.
[18] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, “A dataset from

change history to support evaluation of software maintenance tasks,” in
Proc. MSR, 2013, pp. 131–134.

[19] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin,
E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. Huffman Hayes,
A. Dekhtyar, D. Manukian, S. Hossein, and D. Hearn, “Tracelab:
An experimental workbench for equipping researchers to innovate,
synthesize, and comparatively evaluate traceability solutions,” in Proc.
ICSE, 2012, pp. 1375–1378.

[20] B. Dit, E. Moritz, and D. Poshyvanyk, “A TraceLab-based solution for
creating, conducting, and sharing feature location experiments,” in Proc.
ICPC, 2012, pp. 203–208.

[21] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Transactions on Information Systems, vol. 20, no. 4,
pp. 422–446, 2002.

[22] B. Croft, D. Metzler, and T. Strohman, Search Engines: Information
Retrieval in Practice, 1st ed. Addison-Wesley Publishing Company,
2009.

[23] G. Salton and M. J. McGill, Introduction to modern information re-
trieval. McGraw-Hill, Inc., 1983.

[24] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by Latent Semantic Analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[25] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proc. AOSD, 2005, pp. 159–168.

[26] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is
it dangerous to use version control histories to study source code
evolution?” in Proc. ECOOP, 2012, pp. 79–103.

[27] F. A. Fontana, V. Ferme, and M. Zanoni, “Filtering code smells detection
results,” in Proc. ICSE, 2015, pp. 803–804.

[28] R. Arcoverde, E. Guimaraes, I. Macia, A. Garcia, and Y. Cai, “Prioritiza-
tion of Code Anomalies Based on Architecture Sensitiveness,” in Proc.
27th Brazilian Symposium on Software Engineering, 2013, pp. 69–78.

[29] D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proc. CSMR, 2004,
pp. 223–232.

[30] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a
Prioritization of Code Debt : A Code Smell Intensity Index,” in Proc.
IEEE 7th International Workshop on Managing Technical Debt, 2015,
pp. 16–24.

[31] S. Hayashi, M. Saeki, and M. Kurihara, “Supporting refactoring activ-
ities using histories of program modification,” IEICE Transactions on
Information and Systems, vol. E89-D, no. 4, pp. 1403–1412, 2006.

[32] H. Liu, X. Guo, and W. Shao, “Monitor-based instant software refac-
toring,” IEEE Transactions on Software Engineering, vol. 39, no. 8, pp.
1112–1126, 2013.

[33] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prioritize
code smells for refactoring,” Automated Software Engineering, pp. 1–32,
2014, DOI: 10.1007/s10515-014-0175-x.


