Context-Based Code Smells Prioritization for Prefactoring

Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki

Department of Computer Science Tokyo Institute of Technology

INTRODUCTION

Prefactoring^[1]

Problem

Code smell detection results

Goal

Smells that are relevant to developers' context

Key Idea

[1] R. Marinescu, "Assessing technical debt by identifying design flaws in software systems," IBM Journal of Research and Development, 2012
 [2] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, "Towards a Prioritization of Code Debt : A Code Smell Intensity Index, "MTD2015

PROPOSED TECHNIQUE

Developers' context

Developers' context = modules to be modified

This list is used to estimate developers' context

Impact analysis

Identify modules in source code that are likely to be affected by the changes \diamond Impact analysis \rightarrow Change prediction **Relevant modules** Change description #1 There is a bug in login LoginPage.login() page that user can login LoginPage.Reset() successfully if leave the UserPage.setPassword() password field blank. FormField.getPassword() ... UserPage.ShowError()

Approach overview

 [1] B. Dit, E. Moritz, and D. Poshyvanyk, "A TraceLab-based Solution for Creating, Conducting, and Sharing Feature Location Experiments,", ICPC2012
 [2] https://www.intooitus.com/products/infusion

Scoring

Context Relevance Index

Accumulating the score of matched modules in IA result

Impact analysis results

Code smell detection results

Smell	Level	Module	CRI	
Blob	Method	LoginPage.login()	0.4	

#1

Relevant modules	Score
<pre>FormField.getPassword()</pre>	0.5
LoginPage.login()	0.1

#50

Relevant modules	Score
UserPage.Reset()	0.7
LoginPage.login()	0.3

EMPIRICAL STUDIES

Empirical Studies

RQ2 : Does the accuracy of IA affect quality of the ranking ?

RQ3 : Does Context-based smell prioritization provide more relevant results than the severity-based one?

Subjects

Use Dit et al.'s benchmark dataset^[1]

Metric

nDCG (Normalized Discounted Cumulative Gain)

- Metric for evaluating the quality of ranking documents
- Relevant documents in higher rank are more useful than the ones in lower rank

Calculate nDCG for: Severity CRI InFusion VS.

Oracle

Smells occurring in the modules *actually* modified during two releases

Reorder

Empirical Studies

RQ2 : Does the accuracy of IA affect quality of the ranking ?

RQ3 : Does Context-based smell prioritization provide more relevant results than the severity-based one?

RQ2

[1] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated impact analysis for managing software changes," ICSE2012

RQ2

RQ2: Does the accuracy of impact analysis affect quality of the ranking?

Spearman's correlation coefficient

Evaluate the association between two variables

Empirical Studies

RO2 : Does the accuracy of IA affect quality of the ranking ?

RQ3 : Does Context-based smell prioritization provide more relevant results than the severity-based one?

RQ3

RQ3: Does context-based smell prioritization provide more relevant results than the severitybased one?

RQ3

Baseline

Our approach

Rank	Smell Type	Class Name	Severity	#lssues	Rank	Smell Type	Class Name	CRI	#lssues
1	Blob	GeneratorCSharp	8		1	God	Project	7.90	3
2	Blob	GeneratorJava	8		2	God	ProjectBrowser	4.04	7
3	God	FigAssociation	8	5	3	Blob	ProjectBrowser	4.04	7
4	Blob	ParserDisplay	8	1	4	SC	StylePanel	2.43	1
5	Blob	GeneratorPHP4	7		5	God	FigNodeModelElemen	2.18	4
6	RPB	FigClassifierRole	7	3	6	God	UMLMutableGraphS	1.54	
7	Blob	Modeller	7	1	7	Blob	GeneratorCSharp	1.04	
8	SC	Import	6		8	God	FigEdgeModelIEleme	0.94	3
9	God	CoreFactoryMDRImpl	5	1	9	God	ExtensionMechanism	0.91	1
10	RPB	StylePanelFigText	5		10	God	CoreFactoryMDRImpl	0.80	1

CONCLUSION

Conclusion

Context-based code smells prioritization

Prefactoring

Automated

Accuracy of IA tends to impact the results

More relevant results than severity-based