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ABSTRACT
Bug localization is a technique that has been proposed to sup-
port the process of identifying the locations of bugs specified in
a bug report. A traditional approach such as information retrieval
(IR)-based bug localization calculates the similarity between the
bug description and the source code and suggests locations that
are likely to contain the bug. However, while many approaches
have been proposed to improve the accuracy, the likelihood of
each module having a bug is often overlooked or they are treated
equally, whereas this may not be the case. For example, modules
having code smells have been found to be more prone to changes
and faults. Therefore, in this paper, we explore a first step toward
leveraging code smells to improve bug localization. By combining
the code smell severity with the textual similarity from IR-based
bug localization, we can identify the modules that are not only
similar to the bug description but also have a higher likelihood of
containing bugs. Our preliminary evaluation on four open source
projects shows that our technique can improve the baseline ap-
proach by 142.25% and 30.50% on average for method and class
levels, respectively.
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1 INTRODUCTION
Bug localization refers to the process of identifying the location(s)
of a given bug, which can be a tedious task in large-scale software
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development projects. Therefore, many ideas have been proposed
to automate this process using software development information,
such as bug description (information retrieval or IR-based) [7] or
execution trace (dynamic analysis) [13] approaches.

To improve the accuracy of these approaches, many papers have
proposed combining an approach with extra information to im-
prove performance (e.g., hybrid approaches). For example, Tan-
tithamthavorn et al. [11] used co-change history to improve bug
localization under the assumption that the files that were changed
together with a buggy file in the past should be fixed together.
Zhou et al. [15] proposed BugLocator, an approach that combines
similar bug reports that have been fixed in the past with an IR-
based approach. Saha et al. [9] presented BLUiR, an approach that
enhances the traditional approach by incorporating structural in-
formation, i.e., class names would be more important than com-
ments or identifiers, in addition to using similar bug reports in
the past. Furthermore, Wang et al. [12] proposed AmaLgam which
combines version history, similarity report, and structural infor-
mation to improve bug localization. In addition, Youm et al. [14]
proposed Bug Localization using Integrated Analysis (BLIA) by an-
alyzing texts, stack traces, and comments in bug reports, structured
information of the source files, and the source code change his-
tory. More details on work regarding hybrid bug localization can
be found in [10].

Most of the existing work try to improve the accuracy of bug lo-
calization by focusing on combiningwith extra information, which
may not always be available. In addition, the likelihood of each
module having a bug is often ignored or the modules are treated
equally in existing approaches, even though this may not be the
case. For instance, many papers have investigated and found that
modules having code smells are more likely to be changed and
faulty [4, 5]. As a result, in this paper, we explore a first step to-
ward utilizing code smells, which can be directly generated from
the source code, under the assumption that they can be used to
improve bug localization.

The main contributions of this paper are as follows.
(1) We show that code smells can be combined with traditional

bug localization to improve its accuracy.
(2) We propose a metric representing the combination of tex-

tual similarity and the property of code smell.
(3) We present an empirical study regarding the optimal pro-

portion of textual similarity and the property of code smell.
The new idea of this paper is the use of code smells to improve

bug localization because although code smells have been found to
be related to change- and fault-proneness, no study has considered
the use of code smells for bug localization. The paper most closely
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Figure 1: Overview of the proposed technique.

related to this work is a short survey on hybrid bug localization by
Shi et al. [10].Whereas the use of various information such as stack
trace and version history commonly could be found in the litera-
ture according to the survey, the use of code smells has not been
studied. Because we intend this study to be the first step toward
exploring the usage of code smells to improve bug localization, we
use only one property of code smell, i.e., severity, which describes
how strong a given code smell is. Therefore, we welcome sugges-
tions on how to exploit other properties of code smell such as the
type of code smell.

The remainder of this paper is organized as follows. The next
section explains our proposed technique. Then, we present a pre-
liminary evaluation on four open source projects in Section 3.3.
Finally, we conclude this study and state our future work in Sec-
tion 4.

2 PROPOSED TECHNIQUE
We propose a technique to improve bug localization by using code
smells. An overview of our proposed technique is shown in Fig-
ure 1, where each gray node represents a subprocess. First, we use
the content of a bug report, containing summary and description,
together with the source code as inputs for an existing bug local-
ization approach.We then detect the code smells of the source code
using existing tools. Finally, we calculate the score of each module
by combining the outputs from the bug localization and code smell
detection approaches. The next subsections explain each subpro-
cess in detail.

2.1 Bug Localization
We use the Vector Space Model (VSM) approach for bug local-
ization because it has been shown to be the most effective ap-
proach among IR-based techniques [8]. VSM takes a bug descrip-
tion and the source code as inputs and calculates the textual simi-
larity Sim(m) of each modulem.

2.2 Code Smell Detection
For code smell detection, we choose an approach that takes source
code as its only input and then generates a list of modules contain-
ing code smell together with its properties such as smell type or
its severity. The severity of a code smell represents how strong the
code smell is. For example, Marinescu [6] defined it as: “Severities

are computed by measuring howmany times the value of a chosen
metric exceeds a given threshold”. The severity of the code smell al-
lows a developer to distinguish the importance of individual smells
of the same type, which can then be used for prioritizing or filter-
ing code smells. In this study, the summation of the severities of
every code smell in modulem is defined as Sev (m). However, we
only utilize code smells with the same granularity as the targeted
module.

2.3 Scoring
In this paper, we combine traditional IR-based bug localizationwith
a code smell property, i.e., severity. We propose the metric Bug
Likelihood Index (BLI ), which is a linear combination of the tex-
tual similarity from the traditional IR-based approach and the code
smell severity. The underlying reason for choosing a linear com-
bination is that it allows us to analyze the weight of each factor.
In addition, it is commonly used in hybrid bug localization where
multiple factors need to be combined [10–15].

To calculate BLI of a modulem, we first need to normalize both
the textual similarity between a bug description and the modulem
and the severity of code smell in modulem to a scale of 0–1. The
normalized textual similarity Sim(m) and severity Sev (m) are rep-
resented as nSim(m) and nSev (m) respectively. Then, BLI of mod-
ulem can be calculated using the following formula:

BLI (m) = (1 − α ) · nSim(m) + α · nSev (m)

where 0 ≤ α ≤ 1. Setting α = 0 means that we ignore code smell
severity, which is equivalent to using only the traditional IR-based
approach. On the other hand, setting α = 1 means that we ignore
the textual similarity and use only code smell severity for local-
izing bugs. In addition, setting α = 0.5 means that we give equal
weight to both textual similarity and code smell severity. Thus, α
is a parameter of our approach that can be adjusted for optimum
performance. The details will be discussed in the next section.

3 PRELIMINARY EVALUATION
3.1 Research Questions
To validate the potential of our approach, we conduct an evalua-
tion based on the following research questions.

RQ1: Can our approach improve the traditional IR-based bug lo-
calization?

Our hypothesis assumes that the modules having code smells
are more likely to be the location of bugs. Therefore, to validate
whether combining code smell property can help improve the tra-
ditional IR-based bug localization, we need to compare the accu-
racy of using only the traditional approach with the accuracy of
our approach, i.e., combining with a property of code smell.

RQ2:What is the best parameter value of our approach?
As discussed earlier, the α value is the parameter of our ap-

proach representing the weight of each factor. Such a parameter
can be optimized in an empirical manner, e.g., developers can ad-
just its value based on historical information. However, to under-
stand this approach, we need to know how our technique performs
for different α values on different projects. We suspect that our
technique will perform differently for each α value and that its op-
timum value will depend on the project.
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Figure 2: Comparison of MAP values between the baseline
and our approach.

3.2 Experimental Setup
3.2.1 Experimental Implementation. We implement a tool to sup-

port the automation process of the framework described in Fig-
ure 1. The tool takes the output of existing bug localization and
code smell detection tools, calculates BLI , and then presents the
results.

We use TraceLab [2] as bug localization tool to calculate the
textual similarity between the source code and bug report because
the tool contains the VSM component.

As for code smell detection, we use inFusion Ver. 1.9.0 because
it can output many kinds of properties of a code smell, e.g., the
severity of code smell.

3.2.2 Data Collection. In this study, we use the data set of Dit
et al. [3] to conduct the experiment. The data set contains a list of
issues from an issue tracking system that need to be fixed before
a specific release, the source code snapshot of the version, and the
modules that was modified to solve each issue (gold set modules)
of four open source projects (ArgoUML, JabRef, jEdit, andmuCom-
mander). Because the data set was mainly created for benchmark-
ing feature location techniques, which are closely related to and
share similar settings as bug localization, it contains many types
of issues, e.g., bugs, features, and patches. However, as this study
focuses on bug localization, we extract only the issues classified as
bugs. Thus, there are 74, 36, 86, and 81 bugs for ArgoUML, JabRef,
jEdit, and muCommander, respectively.

3.2.3 Data Analysis. To evaluate our approach, we use theMean
Average Precision (MAP) [1] as ametric because it is widely used to
evaluate ranking results, especially in bug localization [8–10, 12–
15].

3.3 RQ1: Can our approach improve the
traditional IR-based bug localization?

3.3.1 Study Design. To answer the first research question, we
compute the accuracies of the traditional IR-based approach (our

baseline) and compare them with the ones of our approach. We se-
lect the optimum parameter of each project in an empirical manner
that will be discussed in RQ2.

3.3.2 Results and Discussion. Figure 2 presents the results of
our experiment for themethod level and class level. For themethod
level, our approach can improve the traditional IR-based bug local-
ization approximately by 281%, 184%, 68%, and 36% for ArgoUML,
JabRef, jEdit, and muCommander, respectively.

For the class level, the improvement is less than for the method
level, but our method can still improve traditional IR-based bug
localization for every project by approximately 36%, 34%, 24%, and
28% for ArgoUML, JabRef, jEdit, and muCommander, respectively.

By comparing the method and class levels, we can observe that
the overall accuracies of the method level are lower than the ones
of the class level. The underlying reason may be that method level
modules are more difficult to predict due to the granularity of the
modules, i.e., the method level modules are more fine-grained and
have a higher number than the class level ones. In addition, when
we consider the improvement of the traditional IR-based approach,
we can see that the improvement of the method level is much
higher than the one of the class level. This may be due to the low
accuracy of the method level, which makes it easier to improve.
In addition, another possible explanation is that the traditional IR-
based approach may work better on the class level because of the
larger amount of content when computing the textual similarity.

In conclusion, our approach can improve traditional IR-
based bug localization by 142.25% and 30.5% on average for
the method level and class level, respectively.

3.4 RQ2: What is the best parameter value of
our approach?

3.4.1 Study Design. To answer the second research question,
we conduct experiments using different α values in the range 0.00–
1.00 with steps of 0.01 for each granularity (class level and method
level). Then, we calculate MAP of each setting.

3.4.2 Results and Discussion. Figure 3 shows the result of our
experiment. Each graph shows the MAP value at different α for
each project. The point for α = 0 refers to the accuracy when using
only the traditional approach, whereas α = 1 refers to the accuracy
when using only the code smell property to localize bug. We can
observe that, in most cases, our technique performs worst when
using only code smell property (α = 1). This is expected because
code smell property does not contain the information of the bug
report. However, when we combine the traditional approach with
code smell property (0 < α < 1), we can see improvements for
some values. This indicates that combining the code smell property
with the traditional approach can improve the accuracy depending
on the weights of the combination.

Considering the class level (black lines), we can see that the
points where MAP reaches its highest values are α = 0.42, 0.25,
0.37, and 0.46 for ArgoUML, JabRef, jEdit, and muCommander, re-
spectively (black dots). For the method level (red lines), the opti-
mum weights are 0.43, 0.44, 0.47, and 0.41 for ArgoUML. JabRef,
jEdit, and muCommander, respectively (red dots). The average op-
timum α value is approximately 0.41, indicating that our technique
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Figure 3: MAP of results obtained using different α values.

works best when the weight of the code smell severity is slightly
lower than for the textual similarity from the traditional approach.

However, when comparing the optimum value of class level and
method level, we can see that the optimum value of the class level
is smaller than the one of the method level in most projects. As
discussed in RQ1, one possible explanation is that the traditional
bug localization performs better with class level and therefore need
less extra information of code smells than for the method level.

To sum up, while the best parameter value may be dif-
ferent and depends on each project, the average value is ap-
proximately 0.41.

3.5 Threats to Validity
The first threat to validitymay be the dependence on the parameter
value that we chose in RQ1 as we selected the best value empiri-
cally. However, empirical tuning of hyper parameters is commonly
done in bug localization [10–15]. In addition, in future work, we
plan to conduct a study on a larger scale, i.e., not only single ver-
sion, but throughout the software life cycle. In this way, we can
employ machine learning techniques to tune the parameter and
generalize our approach.

Moreover, the baseline used in this study is not a state-of-the-art
approach but the traditional IR-based bug localization. Neverthe-
less, the main purpose of this paper is to explore the opportunity
of using code smells to improve bug localization. In future work,
we plan to combine code smells with a state-of-the-art approach
and validate whether we can still improve the bug localization.

4 CONCLUSION
In this paper, we explored the first step of using code smells to
improve bug localization by combining a property of code smell
with existing information from an IR-based approach. By apply-
ing our approach to four open source projects on both the class
and method levels we showed that it could improve the traditional
bug localization approach by 142.25% and 30.50% on average for
method and class levels, respectively.

We plan to explore other properties of code smell such as smell
types to see how they impact the accuracy of bug localization. Ad-
ditionally, we need to explore the possibility of combining code
smells with not only IR-based but also other approaches such as
static and dynamic bug localization.
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